Neuronal nitric oxide synthase (nNOS) in fast-twitch skeletal muscle fibers is primarily particulate in contrast to its greater solubility in brain. Immunohistochemistry shows nNOS localized to the sarcolemma, with enrichment at force transmitting sites, the myotendinous junctions, and costameres. Because this distribution is similar to dystrophin, we determined if nNOS expression was affected by the loss of dystrophin. Significant nNOS immunoreactivity and enzyme activity was absent in skeletal muscle tissues from patients with Duchenne muscular dystrophy. Similarly, in dystrophin-deficient skeletal muscles from mdx mice both soluble and particulate nNOS was greatly reduced compared with C57 control mice. nNOS mRNA was also reduced in mdx muscle in contrast to mRNA levels for a dystrophin binding protein, cal-syntrophin. nNOS levels increased dramatically from 2 to 52 weeks of age in C57 skeletal muscle, which may indicate a physiological role for NO in aging-related processes. Biochemical purification readily dissociates nNOS from the dystrophin-glycoprotein complex. Thus, nNOS is not an integral component of the dystrophin-glycoprotein complex and is not simply another dystrophin-associated protein since the expression of both nNOS mRNA and protein is affected by dystrophin expression.
The endogenous formation of nitric oxide (NO) has become an area of intense interest as evidence for its biological functions has been obtained in three distinct tissues: circulating macrophages, in which it exerts cytotoxic effects; blood vessels, in which it has been identified as endotheliumderived relaxing factor; and neuronal cells, in which it functions as a neurotransmitter. The formation of NO in brain extracts has been shown to be catalyzed by an enzyme, termed NO synthase, which generates the NO responsible for stimulation of cGMP formation, the highest levels of which occur in the cerebellum. NO synthase catalyzes the formation of citrulline from arginine with the coincident production of NO and has been shown to be a flavoprotein, containing 1 mol each of FAD and FMN, tetrahydrobiopterin, and iron. It is also reported to contain an a-helical, calmodulin-binding consensus sequence consistent with its stimulation by calmodulin in the presence of Ca2+. The formation of NO requires incorporation of one of the atoms of molecular oxygen into one of the guanidinium nitrogen atoms of arginine with the coincident formation of citrulline. This communication reports that rat cerebellar NO synthase, cloned and stably expressed in human kidney 293 cells, contains heme in amounts stoichiometric with the flavins FAD and FMN as evidenced by the appearance of a pyridine hemochrome and a reduced CO difference spectrum with an absorbance maximum at =445 um. The finding of a
The nitric oxide synthases (NOS-I, neuronal, NOS-II, inducible, and NOS-III, endothelial) are the most recent additions to the large number of heme proteins that contain cysteine thiolate-liganded protoporphyrin IX heme prosthetic groups. This group of oxygenating enzymes also includes one of the largest gene families, that of the cytochromes P450, which have been demonstrated to be involved in the hydroxylation of a variety of substrates, including endogenous compounds (steroids, fatty acids, and prostaglandins) and exogenous compounds (therapeutic drugs, environmental toxicants, and carcinogens). The substrates for cytochromes P450 are universally hydrophobic while the physiological substrate for the nitric oxide synthases is the amino acid L-arginine, a hydrophilic compound. This review will discuss the approaches being used to study the structure and mechanism of neuronal nitric oxide synthase in the context of its known prosthetic groups and regulation by Ca(2+)-calmodulin and/or tetrahydrobiopterin (BH4).
NO synthase (NOS) is a family of enzymes that catalyzes the NADPH-dependent formation of NO and citrulline from L-arginine and molecular oxygen. The reaction involves an initial hydroxylation of L-arginine to form the isolable intermediate NG-hydroxy-L-arginine (NOHArg). The subsequent incorporation of a second atom of oxygen during the metabolism of NOHArg is required to yield the final products NO and citrulline. NOS contains heme iron, FAD, FMN, and tetrahydrobiopterin prosthetic groups. To examine the interaction of substrates with the heme prosthetic group, substrate perturbation difference spectrophotometry was employed. By analogy with substrate binding interactions with cytochromes P450, NOS exhibits "type I" substrate perturbation difference spectra with the substrates L-arginine and NOHArg and the inhibitor NG-methyl-L-arginine (NMA). These spectral perturbations are characterized by the appearance in the difference spectrum of a peak at approximately 380 nm, a trough with an absorbance minimum at approximately 420 nm, and an isosbestic point at approximately 405 nm. The spectral binding constants, Ks, for L-arginine and NMA were determined to be approximately 2.5 microM. These values are in agreement with the reported kinetic constants for these compounds. The "apparent Ks" values for NOHArg were 0.4 microM (2.0 microM NOS) and 0.8 microM (3.5 microM NOS), respectively. Furthermore, NOS exhibits "type II" difference spectra upon titration with imidazole, characterized by the appearance of a peak at approximately 430 nm and a trough at approximately 395 nm, with a spectral binding constant of approximately 160 microM.
The heme- and flavin-binding domains of constitutive rat neuronal nitric oxide synthase (NOS) were expressed in Escherichia coli as distinct polypeptides with properties characteristic of the intact enzyme. The amino-terminal heme-binding domain (residues 1-714) was expressed using the expression vector pCW. The denatured molecular mass of the expressed protein was 80 kDa, and the protein was shown to be immunoreactive to rabbit anti-NOS IgG. The NOS hemoprotein exhibited a ferrous-carbon monoxide difference spectrum with a wavelength maximum at 445 nm. Spectral perturbation with L-arginine and BH4 elicited a type I difference spectrum, confirming the presence of binding sites for these molecules within the N-terminal NOS polypeptide. Site-directed mutagenesis was applied to the putative axial heme ligand, cysteine-415, generating the histidine mutant, which confirmed the identity of the proximal ligand. NOS flavoproteins, with (C1, residues 715-1429) and without (C2, residues 749-1429) an amino-terminal calmodulin-binding motif, were expressed using the vector pPROK-1. The C1 and C2 flavoproteins were immunoreactive to anti-NOS IgG and were sized at approximately 80 kDa. Both of the purified flavoproteins exhibited optical absorbance properties typical of a flavin prosthetic group, with wavelength maxima at 380 and 450 nm, and were competent in NADPH-dependent electron transfer to cytochrome c, with observed rates of approximately 2-4 mumol/min/mg. The bacterial expression of the NO synthase heme-binding oxygenase and flavoprotein oxidoreductase domains as isolated proteins with specific properties of the intact enzyme represents an important development in structure-function studies of this complex enzyme.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.