Erlotinib, an epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI), shows superior efficacy in patients with non-small cell lung cancer (NSCLC) harboring activating EGFR mutations (EGFR Mut+). However, almost all tumors eventually develop resistance to erlotinib. Recently, the Phase II JO25567 study reported significant prolongation of progression-free survival (PFS) by erlotinib plus bevacizumab combination compared with erlotinib in EGFR Mut+ NSCLC. Herein, we established a preclinical model which became refractory to erlotinib after long-term administration and elucidated the mode of action of this combination. In this model, tumor regrowth occurred after remarkable shrinkage by erlotinib; regrowth was successfully inhibited by erlotinib plus bevacizumab. Tumor vascular endothelial growth factor (VEGF) was greatly reduced by erlotinib in the erlotinib-sensitive phase but significantly increased in the erlotinib-refractory phase despite continued treatment with erlotinib. Although EGFR phosphorylation remained suppressed in the erlotinib-refractory phase, phosphorylated extracellular signal-regulated kinase (pERK), phosphorylated AKT, and phosphorylated signal transducer and activator of transcription 3 (pSTAT3) were markedly higher than in the erlotinib-sensitive phase; among these, pERK was suppressed by erlotinib plus bevacizumab. MVD was decreased significantly more with erlotinib plus bevacizumab than with each drug alone. In conclusion, the erlotinib plus bevacizumab combination demonstrated promising efficacy in the B901L xenograft model of EGFR Mut+ NSCLC. Re-induction of VEGF and subsequent direct or indirect VEGF-dependent tumor growth was suggested as a major mechanism of erlotinib resistance, and erlotinib plus bevacizumab achieved remarkably prolonged antitumor activity in this model.
Anti-PD-L1 antibodies inhibit interactions between PD-L1 and PD-1 and interactions between PD-L1 and B7-1, thereby reinvigorating anticancer immunity. Although there are numerous ongoing clinical studies evaluating combinations of standard chemotherapies and anti-PD-L1 antibodies, irinotecan has not yet been investigated in this context so there is little information about its compatibility with anti-PD-L1 antibodies. Here we investigated the efficacy of anti-PD-L1 antibody in combination with irinotecan and the role of irinotecan in the tumor–immunity cycle in an FM3A murine tumor model. Despite a transient decrease in lymphocytes in the peripheral blood after irinotecan treatment, the antitumor activity of anti-PD-L1 antibody plus irinotecan was significantly greater than each agent alone. Irinotecan in combination with anti-PD-L1 antibody enhanced proliferation of CD8+ cells in both tumors and lymph nodes, and the number of tumor-infiltrating CD8+ cells was higher than either irinotecan or anti-PD-L1 antibody monotherapy. Irinotecan was found to decrease the number of Tregs in lymph nodes and tumors, and specific depletion of Tregs by anti-folate receptor 4 antibodies was found to enhance the proliferation of CD8+ cells in this model. In addition, irinotecan augmented MHC class I expression on tumor cells and concurrently increased PD-L1 expression on tumor cells and tumor-infiltrating immune cells. These results indicate that irinotecan may enhance the effect of T cell activation caused by anti-PD-L1 treatment by reducing Tregs and augmenting MHC class I–mediated tumor antigen presentation, and concurrent upregulation of PD-L1 expression can be blocked by the anti-PD-L1 antibody. These interactions may contribute to the superior combination effect.
Background Mytilisepta virgata is a marine mussel commonly found along the coasts of Japan. Although this species has been the subject of occasional studies concerning its ecological role, growth and reproduction, it has been so far almost completely neglected from a genetic and molecular point of view. In the present study we present a high quality de novo assembled transcriptome of the Japanese purplish mussel, which represents the first publicly available collection of expressed sequences for this species.ResultsThe assembled transcriptome comprises almost 50,000 contigs, with a N50 statistics of ~1 kilobase and a high estimated completeness based on the rate of BUSCOs identified, standing as one of the most exhaustive sequence resources available for mytiloid bivalves to date. Overall this data, accompanied by gene expression profiles from gills, digestive gland, mantle rim, foot and posterior adductor muscle, presents an accurate snapshot of the great functional specialization of these five tissues in adult mussels.ConclusionsWe highlight that one of the most striking features of the M. virgata transcriptome is the high abundance and diversification of lectin-like transcripts, which pertain to different gene families and appear to be expressed in particular in the digestive gland and in the gills. Therefore, these two tissues might be selected as preferential targets for the isolation of molecules with interesting carbohydrate-binding properties.In addition, by molecular phylogenomics, we provide solid evidence in support of the classification of M. virgata within the Brachidontinae subfamily. This result is in agreement with the previously proposed hypothesis that the morphological features traditionally used to group Mytilisepta spp. and Septifer spp. within the same clade are inappropriate due to homoplasy.Electronic supplementary materialThe online version of this article (doi:10.1186/s12864-017-4012-z) contains supplementary material, which is available to authorized users.
Background: Immune checkpoint inhibitors have marked antitumor effect. However, monotherapy benefits only a limited population of patients, and further improvement of their effects is required. Here the therapeutic effect and immune response during anti-PD-L1 plus cisplatin combination therapy were investigated in a mouse model. Materials and Methods: E.G7-OVA, expressing ovalbumin (OVA) gene as a model tumor antigen, was subcutaneously inoculated into syngeneic mice and treated with anti-PD-L1 with/without cisplatin. The tumor growth and activation status of immune cells were evaluated. Results: The anti-PD-L1 plus cisplatin combination resulted in a potent antitumor effect leading to tumor shrinkage compared to anti-PD-L1 or cisplatin alone, even though each alone, significantly inhibited tumor growth compared to the control group. During treatment, all groups, including that treated with cisplatin alone, had increased CD8 + T-cell infiltration into tumor tissues compared with the control group, and the therapeutic effect was diminished by CD8 + cell depletion. Aside from its direct cytotoxic effect, cisplatin alone increased chemokine levels and expression of immune checkpoint molecules on CD8 + T-cells in the tumor site. The combination effectively activated OVA-specific CD8 + T-cells. Furthermore, anti-PD-L1 alone and in combination with cisplatin, but not cisplatin alone, induced interferon-gammaproducing CD4 + T-cells. Conclusion: These findings provide a rationale for anti-PD-L1 plus cisplatin becoming a promising combination therapy for patients with cancer.
Brain metastases are common in patients with non-small-cell lung cancer (NSCLC). The efficacy of bevacizumab, an antivascular endothelial growth factor (VEGF) humanized antibody, has been demonstrated in patients with nonsquamous NSCLC. We established a transplantable NSCLC cell line (Nluc-H1915) that stably expresses NanoLuc® reporter and confirmed the correlation between total Nluc activity in tumor and tumor volume in vivo. SCID mice inoculated with these cells through the internal carotid artery formed reproducible brain metastases, in which human VEGF was detected. Next, after metastases were established in the model mice (15-17 days), they were intraperitoneally administered weekly doses of human immunoglobulin G (HuIgG) or bevacizumab. Nluc activity in the brain was significantly lower in bevacizumab-treated mice than in HuIgG-treated mice. Additionally, bevacizumab concentration in the brain was higher in mice with brain metastasis than in normal mice, and bevacizumab was primarily observed in brain metastasis lesions. The microvessel density in brain metastasis was lower in bevacizumab-treated mice than in HuIgG-treated mice. We believe bevacizumab's anti-proliferative effect on brain metastasis is due to anti-angiogenic activity achieved by its penetration into brain metastases; this suggests that a bevacizumab-containing regimen may be a promising treatment option for patients with NSCLC brain metastasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.