Surface-enhanced Raman spectroscopy (SERS) has been intensely studied as a possible solution in the fields of analytical chemistry and biosensorics for decades. Substantial research has been devoted to engineering signal enhanced SERS-active substrates based on semi-continuous nanostructured silver and gold films, or agglomerates of micro- and nanoparticles in solution. Herein, we demonstrate the high-amplitude spectra of myoglobin precipitated out of ultra-low concentration solutions (below 10 μg/mL) using e-beam evaporated continuous self-assembled silver films. We observe up to 105 times Raman signal amplification with purposefully designed SERS-active substrates in comparison with the control samples. SERS-active substrates are obtained by electron beam evaporation of silver thin films with well controlled nanostructured surface morphology. The characteristic dimensions of the morphology elements vary in the range from several to tens of nanometers. Using optical confocal microscopy we demonstrate that proteins form a conformation on the surface of the self-assembled silver film, which results in an effective enhancement of giant Raman scattering signal. We investigate the various SERS substrates surface morphologies by means of atomic force microscopy (AFM) in combination with deep data analysis with Gwyddion software and a number of machine learning techniques. Based on these results, we identify the most significant film surface morphology patterns and evaporation recipe parameters to obtain the highest amplitude SERS spectra. Moreover, we demonstrate the possibility of automated selection of suitable morphological parameters to obtain the high-amplitude spectra. The developed AFM data auto-analysis procedures are used for smart optimization of SERS-active substrates nanoengineering processes.
Angiotensin I‐converting enzyme (ACE) is a glycoprotein, consisting of two homologous domains within a single polypeptide chain. ACE concentration in biological fluids is an important parameter of clinical observation; its increase or decrease may accompany various pathologies. Currently, the exact crystal structure of the two‐domain ACE form is still unknown because of microheterogeneity and intensity of the enzyme glycosylation. Raman spectroscopy provides the qualitative and quantitative analysis of many compounds, including proteins. For the first time, surface‐enhanced Raman scattering (SERS) spectra of native and thermo‐denatured human ACE have been demonstrated with full assignment. Denaturation leads to SERS intensity increase and bands shifting. Detailed band assignment and discussion are included to elucidate the potential site of ACE interaction with the silver surface. Based on SERS spectra, we characterized the region on the ACE molecule in contact with the substrate and demonstrated the model of the two‐domain ACE adsorbed on a silver matrix.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.