We elucidate the detailed effects of gut microbial depletion on the bile acid sub-metabolome of multiple body compartments (liver, kidney, heart, and blood plasma) in rats. We use a targeted ultraperformance liquid chromatography with time of flight mass-spectrometry assay to characterize the differential primary and secondary bile acid profiles in each tissue and show a major increase in the proportion of taurine-conjugated bile acids in germ-free (GF) and antibiotic (streptomycin/penicillin)-treated rats. Although conjugated bile acids dominate the hepatic profile (97.0 ± 1.5%) of conventional animals, unconjugated bile acids comprise the largest proportion of the total measured bile acid profile in kidney (60.0 ± 10.4%) and heart (53.0 ± 18.5%) tissues. In contrast, in the GF animal, taurine-conjugated bile acids (especially taurocholic acid and tauro-β-muricholic acid) dominated the bile acid profiles (liver: 96.0 ± 14.5%; kidney: 96 ± 1%; heart: 93 ± 1%; plasma: 93.0 ± 2.3%), with unconjugated and glycine-conjugated species representing a small proportion of the profile. Higher free taurine levels were found in GF livers compared with the conventional liver (5.1-fold; P < 0.001). Bile acid diversity was also lower in GF and antibiotic-treated tissues compared with conventional animals. Because bile acids perform important signaling functions, it is clear that these chemical communication networks are strongly influenced by microbial activities or modulation, as evidenced by farnesoid X receptor-regulated pathway transcripts. The presence of specific microbial bile acid co-metabolite patterns in peripheral tissues (including heart and kidney) implies a broader signaling role for these compounds and emphasizes the extent of symbiotic microbial influences in mammalian homeostasis.farnesoid X receptor | gut microbiota | TGR5 | ultra-performance liquid chromatography mass spectrometry | G protein-coupled bile acid receptor 1 T he importance of gut microbiome variation in relation to human health and diverse diseases is now well-recognized (1-4). The microbiome is a virtual organ that performs many digestive and metabolic functions for the host, including enhanced calorific recovery from ingested foods and degradation of complex plant polysaccharides. Microbial communities have coevolved with man and show remarkable diversity dependent on topographical location and interperson variability (5). Co-evolution has refined the microbiome of organisms to a state where metabolic complementarity exists within the microbiota (6), and important biosynthetic/ metabolic pathways are provided for the host that significantly extend host metabolic capacity (3). As such, the mammalian host can be considered a superorganism (7), whose metabolism is the sum of that of both the host and the collective microbial community. The enterohepatic circulation provides a vehicle for this transgenomic metabolism, and bile acids, whose functional role in the global mammalian system is multifaceted, are an important class of metabolites that u...
Hydrophilic interaction chromatography (HILIC) is a relatively recently introduced mode of liquid-phase separations. Recently, HILIC has been used for coupling to MS in metabonomic/metabolomic studies to provide a complementary tool to the widely used reversed-phase (RP) chromatographic separations. The combination of HILIC with MS detection covers a number of polar metabolites that are typically nonretained in RPLC-mode separations and thus enlarging the number of detected analytes. This way of metabolite profiling thus provides more comprehensive metabolome coverage than using RP chromatography alone. This review describes the applications and the utility of HILIC-MS in metabolomic/metabonomic studies and highlights certain characteristic examples in the life and plant-food sciences.
To better understand the molecular mechanisms underpinning physiological variation in human populations, metabolic phenotyping approaches are increasingly being applied to studies involving hundreds and thousands of biofluid samples. Hyphenated ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) has become a fundamental tool for this purpose. However, the seemingly inevitable need to analyze large studies in multiple analytical batches for UPLC-MS analysis poses a challenge to data quality which has been recognized in the field. Herein, we describe in detail a fit-for-purpose UPLC-MS platform, method set, and sample analysis workflow, capable of sustained analysis on an industrial scale and allowing batch-free operation for large studies. Using complementary reversed-phase chromatography (RPC) and hydrophilic interaction liquid chromatography (HILIC) together with high resolution orthogonal acceleration time-of-flight mass spectrometry (oaTOF-MS), exceptional measurement precision is exemplified with independent epidemiological sample sets of approximately 650 and 1000 participant samples. Evaluation of molecular reference targets in repeated injections of pooled quality control (QC) samples distributed throughout each experiment demonstrates a mean retention time relative standard deviation (RSD) of <0.3% across all assays in both studies and a mean peak area RSD of <15% in the raw data. To more globally assess the quality of the profiling data, untargeted feature extraction was performed followed by data filtration according to feature intensity response to QC sample dilution. Analysis of the remaining features within the repeated QC sample measurements demonstrated median peak area RSD values of <20% for the RPC assays and <25% for the HILIC assays. These values represent the quality of the raw data, as no normalization or feature-specific intensity correction was applied. While the data in each experiment was acquired in a single continuous batch, instances of minor time-dependent intensity drift were observed, highlighting the utility of data correction techniques despite reducing the dependency on them for generating high quality data. These results demonstrate that the platform and methodology presented herein is fit-for-use in large scale metabolic phenotyping studies, challenging the assertion that such screening is inherently limited by batch effects. Details of the pipeline used to generate high quality raw data and mitigate the need for batch correction are provided.
We report on the first untargeted UPLC-MS study of 2nd trimester maternal urine and amniotic fluid (AF), to investigate the possible metabolic effects of fetal malformations (FM), gestational diabetes mellitus (GDM) and preterm delivery (PTD). For fetal malformations, considerable metabolite variations were identified in AF and, to a lesser extent, in urine. Using validated PLS-DA models and statistical correlations between UPLC-MS data and previously acquired NMR data, a metabolic picture of fetal hypoxia, enhanced gluconeogenesis, TCA activity and hindered kidney development affecting FM pregnancies was reinforced. Moreover, changes in carnitine, pyroglutamate and polyols were newly noted, respectively, reflecting lipid oxidation, altered placental amino acid transfer and alterations in polyol pathways. Higher excretion of conjugated products in maternal urine was seen suggesting alterations in conjugation reactions. For the pre-diagnostic GDM group, no significant changes were observed, either considering amniotic fluid or maternal urine, whereas, for the pre-PTD group, some newly observed changes were noted, namely, the decrease of particular amino acids and the increase of an hexose (possibly glucose), suggesting alteration in placental amino acid fluxes and a possible tendency for hyperglycemia. This work shows the potential of UPLC-MS for the study of fetal and maternal biofluids, particularly when used in tandem with comparable NMR data. The important roles played by sampling characteristics (e.g. group dimensions) and the specific experimental conditions chosen for MS methods are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.