BackgroundSodium-glucose cotransporter 2 inhibitor (SGLT2i) blocks reabsorption of glucose by inhibiting SGLT2 in kidney, promotes the renal excretion of glucose and improves blood glucose control without requiring insulin secretion. Anti-atherosclerotic effects of SGLT2is have not been fully elucidated until today.MethodsWe retrospectively picked up patients with type 2 diabetes who had been continuously prescribed SGLT2i for 3 months or more between April 2014 and December 2016 by a chart-based analysis, and compared metabolic parameters including coronary risk factors before the SGLT2i treatment with the data at 3 and 6 months after the SGLT2i treatment started.ResultsWe found 26 patients treated with tofogliflozin, 34 patients with canagliflozin, 27 patients with empagliflozin, 23 patients with ipragliflozin, 68 patients with dapagliflozin and 71 patients with luseogliflozin. Each SGLT2i ameliorated metabolic parameters, in different patterns. SGLT2is reduced body weight, systolic and diastolic blood pressures, plasma glucose, hemoglobin A1c, aspartate aminotransferase, alanine aminotransferase, γ-glutamyltransferase, uric acid, triglyceride and non-high-density lipoprotein-cholesterol (HDL-C), and elevated HDL-C; however, they did not affect LDL-cholesterol levels. Change in each metabolic parameter was significantly correlated with each metabolic parameter at baseline.ConclusionThe present study demonstrated that SGLT2i ameliorated body weight, blood pressure, liver function, serum lipids and uric acid, in addition to improvement of glucose metabolism in patients with type 2 diabetes.
BackgroundSodium-glucose cotransporter 2 inhibitors (SGLT2i) are anti-diabetic drugs which improve blood glucose control by blocking reabsorption of glucose from the proximal tubule of kidney. Anti-atherosclerotic properties and cardiovascular protective effects of SGLT2i have been demonstrated by recent studies; however, the efficacy and safety of addition of SGLT2i to the intensive insulin therapy remain largely unknown.MethodsWe retrospectively picked up patients hospitalized for treatment of type 2 diabetes, who had been treated by the intensive insulin therapy and whose treatment using by SGLT2i started during their hospitalization. Such patients were picked up between June 2014 and May 2017 based on medical charts.ResultsWe found 12 eligible patients. Observation period was 10.2 ± 4.7 days, and SGLT2i was started at 12.2 ± 12.9 days after the admission. During observation period, nobody developed hypoglycemia. In spite of showing decrease of blood glucose (non-significant) before each meal, the addition of SGLT2i significantly reduced daily prandial insulin doses by approximately 4.6 units/day (-66%). The SGLT2i addition also decreased body weight by approximately 1.3 kg.ConclusionPresent study demonstrated that the addition of SGLT2i to intensive insulin therapy reduced prandial insulin doses and body weight, without the development of hypoglycemia. This result may be due to SGLT2i-mediated improvement of postprandial hyperglycemia by increasing urinary glucose excretion not via insulin secretion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.