Miang is a traditional fermented tea made from fermentation of Assam tea leaves with mixed microbial culture involving lactic acid bacteria and yeast. Miang has important bioactive benefits such as antioxidant and antimicrobial activity with relevance to health benefits. Miang is categorized into two processes; filamentous fungi growth-based (FFP) and non-filamentous fungi-based (NFP) process, depending on area of production. Further, Miang is also divided into 2 types; astringent Miang and sour Miang, depending on fermentation time. The aim of this research was to determine the important macronutrient biotransformation of Miang diversity under above processes and types and explore the impact on bioactive compounds relevant to antioxidant and antimicrobial activities. During fermentation, pH, total acid, nutritional components, total polyphenols (TP), total tannins (TT), total flavonoids (TF), total catechins (TC), antioxidant activity and antimicrobial activity were evaluated. Miang when fermented for longer sour Miang process compared to shorter time astringent Miang increased crude protein, fiber, and ash contents whereas soluble carbohydrates decreased. Even though TP, TT, TF and TC of sour Miang was lower, the overall antioxidant activity was higher than astringent Miang. This suggests that in addition to the phenolic compounds, other specific phenolics and substances such as biotransformed protein and fat could contribute to antioxidant properties. Additionally, Miang also contains antimicrobial activities against dental caries pathogenic bacteria Streptococcus mutans, gastrointestinal disease causing Vibrio cholerae and Salmonella enterica serovar Typhimurium through likely effects of organic acids and phenolic compounds.
A total of 117 Bacillus strains were isolated from Miang, a culture relevant fermented tea of northern Thailand. These strains were collected from 16 sampling sites in north Thailand. In this collection 95 isolates were tannin-tolerant Bacillus capable of growth on nutrient agar supplemented with 0.5% (w/v) total tannins from tea leaves extract (TE). The strains were also positive for pectinase, xylanase and amylase activity, while 91 and 86 isolates were positive for cellulase and β-mannanase, respectively. Only 21 isolates producing extracellular tannase were selected for further characterization. Identification by 16S rRNA gene sequence analysis revealed that more than 50% (11 of 21 isolates) were Bacillus tequilensis, whereas the remaining were B. siamensis (3), B. megaterium (3), B. aryabhattai (3) and B. toyonensis (1). B. tequilensis K34.2 produced the highest extracellular tannase activity of 0.60 U/mL after cultivation at 37 °C for 48 h. In addition, all 21 isolates were resistant to 0.3% (w/v) bile salt, sensitive to gentamicin, erythromycin, vancomycin and kanamycin and also tolerant to acidic condition. Cell hydrophobicity varied from 9.4 to 80.4% and neutralized culture supernatants of some Bacillus isolates showed bacteriocin producing potentiality against Samonella enterica serovar Typhimurium TISTR 292. All tested probiotic properties indicated that B. tequilensis K19.3, B. tequilensis K34.2 and B. siamensis K19.1 had high probiotic potential. This is the first report describing tannin-tolerant Bacillus and their extracellular tannase producing capability in Miang, a traditional fermented tea of Thailand.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.