Vancomycin is an important antibiotic for critically ill patients with Grampositive bacterial infections. Critically ill patients typically have severely altered pathophysiology, which leads to inefficacy or toxicity. Model-informed precision dosing may aid in optimizing the dose, but prospectively validated tools are not available for this drug in these patients. We aimed to prospectively validate a population pharmacokinetic model for purpose model-informed precision dosing of vancomycin in critically ill patients. Methods: We first performed a systematic evaluation of various models on retrospectively collected pharmacokinetic data in critically ill patients and then selected the best performing model. This model was implemented in the Insight Rx clinical decision support tool and prospectively validated in a multicentre study in critically ill patients. The predictive performance was obtained as mean prediction error and relative root mean squared error. Results: We identified 5 suitable population pharmacokinetic models. The most suitable model was carried forward to a prospective validation. We found in a prospective multicentre study that the selected model could accurately and precisely predict the vancomycin pharmacokinetics based on a previous measurement, with a mean prediction error and relative root mean squared error of respectively 8.84% (95% confidence interval 5.72-11.96%) and 19.8% (95% confidence interval 17.47-22.13%). Conclusion: Using a systematic approach, with a retrospective evaluation and prospective verification we showed the suitability of a model to predict vancomycin pharmacokinetics for purposes of model-informed precision dosing in clinical practice. The presented methodology may serve a generic approach for evaluation of pharmacometric models for the use of model-informed precision dosing in the clinic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.