Clinical studies involving patients with myelodysplastic syndromes or multiple myeloma have shown the efficacy of lenalidomide by reducing and often eliminating malignant cells while restoring the bone marrow function. To better understand these clinical observations, we investigated and compared the effects of lenalidomide and a structurally related analogue, CC-4047, on the proliferation of two different human hematopoietic cell models: the Namalwa cancer cell line and normal CD34 + progenitor cells. Both compounds had antiproliferative effects on Namalwa cells and pro-proliferative effects on CD34 + cells, whereas p21WAF-1 expression was up-regulated in both cell types. In Namalwa cells, the up-regulation of p21 WAF-1 correlated well with the inhibition of cyclin-dependent kinase (CDK) 2, CDK4, and CDK6 activity leading to pRb hypophosphorylation and cell cycle arrest, whereas in CD34 + progenitor cells the increase of p21 WAF-1 did not inhibit proliferation. Similarly, antiproliferation results were observed in two B lymphoma cell lines (LP-1 and U266) but interestingly not in normal B cells where a protection of apoptosis was found. Finally, CC-4047 and lenalidomide had synergistic effects with valproic acid [a histone deacetylase (HDAC) inhibitor] by increasing the apoptosis of Namalwa cells and enhancing CD34 + cell expansion. Our results indicate that lenalidomide and CC-4047 have opposite effects in tumor cells versus normal cells and could explain, at least in part, the reduction of malignant cells and the restoration of bone marrow observed in patients undergoing lenalidomide treatment. Moreover, this study provides new insights on the cellular pathways affected by lenalidomide and CC-4047, proposes new potential clinical uses, such as bone marrow regeneration, and suggests that the combination of lenalidomide or CC-4047 with certain HDAC inhibitors may elevate the therapeutic index in the treatment of hematologic malignancies. [Cancer Res 2007;67(2):746-55]
Lenalidomide and pomalidomide have both been evaluated clinically for their properties as anticancer agents, with lenalidomide being available commercially. We previously reported that both compounds cause cell cycle arrest in Burkitt's lymphoma and multiple myeloma cell lines by increasing the level of p21 WAF-1 expression. In the present study, we unravel the molecular mechanism responsible for p21 WAF-1 up-regulation using Namalwa cells as a human lymphoma model. We show that the increase of p21 WAF-1 expression is regulated at the transcriptional level through a mechanism independent of p53. Using a combination of approaches, we show that several GC-rich binding transcription factors are involved in pomalidomide-mediated upregulation of p21 WAF-1 . Furthermore, we report that p21 WAF-1 up-regulation is associated with a switch from methylated to acetylated histone H3 on p21 WAF-1 promoter. Interestingly, lysine-specific demethylase-1 (LSD1) silencing reduced both pomalidomide and lenalidomide up-regulation of p21 WAF-1 , suggesting that this histone demethylase is involved in the priming of the p21 WAF-1 promoter. Based on our findings, we propose a model in which pomalidomide and lenalidomide modify the chromatin structure of the p21 WAF-1 promoter through demethylation and acetylation of H3K9. This effect, mediated via LSD1, provides GC-rich binding transcription factors better access to DNA, followed by recruitment of RNA polymerase II and transcription activation. Taken together, our results provide new insights on the mechanism of action of pomalidomide and lenalidomide in the regulation of gene transcription, imply possible efficacy in p53 mutated and deleted cancer, and suggest new potential clinical uses as an epigenetic therapy.
Sickle-cell disease (SCD) and β thalassemia constitute worldwide public health problems. New therapies, including hydroxyurea, have attempted to augment the synthesis of fetal hemoglobin (HbF) and improve current treatment. Lenalidomide and pomalidomide are members of a class of immunomodulators used as anticancer agents. Because clinical trials have demonstrated that lenalidomide reduces or eliminates the need for transfusions in some patients with disrupted blood cell production, we investigated the effects of lenalidomide and pomalidomide on erythropoiesis and hemoglobin synthesis. We used an in vitro erythropoiesis model derived from human CD34 + progenitor cells from normal and SCD donors. We found that both compounds slowed erythroid maturation, increased proliferation of immature erythroid cells, and regulated hemoglobin transcription, resulting in potent induction of HbF without the cytotoxicity associated with other HbF inducers. When combined with hydroxyurea, pomalidomide and, to a lesser extent, lenalidomide were found to have synergistic effects on HbF upregulation. Our results elucidate what we believe to be a new mechanism of action of pomalidomide and lenalidomide and support the hypothesis that pomalidomide, used alone or in combination with hydroxyurea, may improve erythropoiesis and increase the ratio of fetal to adult hemoglobin. These findings support the evaluation of pomalidomide as an innovative new therapy for β-hemoglobinopathies.
Although growth factor- and antibody-targeted filamentous phage have recently been demonstrated to transduce mammalian cells, there is a significant need to increase transduction efficiency so as to improve the usefulness of targeted phage vectors for gene therapy and ligand discovery. Here, we describe the use of multivalent phagemid vectors that are specifically designed for ligand-targeted mammalian cell transduction. This phagemid system has certain advantages over phage vectors, such as larger insert size and vector stability, and it retains the multivalent display necessary for efficient cell binding and internalization. Immunoblotting revealed that the most efficient multivalent display (exceeding that of a phage vector) was achieved in the phagemid system when epidermal growth factor (EGF) was fused to the C-terminal domain of the pIII coat protein. We compared phagemid particles displaying EGF at high or low valence by rescuing the vector with R408d3 (pIII deleted) or wild-type R408 helper phage, respectively. More efficient display of EGF correlated with increased internalization, vector potency, and transduction efficiency ( approximately 9%). The findings described here support our original hypothesis that phage-based vectors can be modified for more efficient gene transfer and suggest that directed evolution may be applied to increase their potential even further.
The rise in the frequency of fungal infections and the increased resistance noted to the widely employed azole antifungals make the development of new antifungals imperative for human health. The sterol biosynthetic pathway has been exploited for the development of several antifungal agents (allylamines, morpholines, azoles), but additional potential sites for antifungal agent development are yet to be fully investigated. The sterol methyltransferase gene (ERG6) catalyzes a biosynthetic step not found in humans and has been shown to result in several compromised phenotypes, most notably markedly increased permeability, when disrupted in Saccharomyces cerevisiae. The Candida albicans ERG6 gene was isolated by complementation of a S. cerevisiae erg6 mutant by using a C. albicans genomic library. Sequencing of theCandida ERG6 gene revealed high homology with theSaccharomyces version of ERG6. The first copy of the Candida ERG6 gene was disrupted by transforming with the URA3 blaster system, and the second copy was disrupted by both URA3 blaster transformation and mitotic recombination. The resulting erg6 strains were shown to be hypersusceptible to a number of sterol synthesis and metabolic inhibitors, including terbinafine, tridemorph, fenpropiomorph, fluphenazine, cycloheximide, cerulenin, and brefeldin A. No increase in susceptibility to azoles was noted. Inhibitors of the ERG6gene product would make the cell increasingly susceptible to antifungal agents as well as to new agents which normally would be excluded and would allow for clinical treatment at lower dosages. In addition, the availability of ERG6 would allow for its use as a screen for new antifungals targeted specifically to the sterol methyltransferase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.