Annelid erythrocruorins are highly cooperative extracellular respiratory proteins with molecular masses on the order of 3.6 million Daltons. We report here the 3.5 A crystal structure of erythrocruorin from the earthworm Lumbricus terrestris. This structure reveals details of symmetrical and quasi-symmetrical interactions that dictate the self-limited assembly of 144 hemoglobin and 36 linker subunits. The linker subunits assemble into a core complex with D(6) symmetry onto which 12 hemoglobin dodecamers bind to form the entire complex. Although the three unique linker subunits share structural similarity, their interactions with each other and the hemoglobin subunits display striking diversity. The observed diversity includes design features that have been incorporated into the linker subunits and may be critical for efficient assembly of large quantities of this complex respiratory protein.
Many annelids, including the earthworm Lumbricus terrestris, have giant cooperative respiratory proteins (molecular masses greater than 3.5 million Da) freely dissolved in the blood, rather than packaged in cells. These complexes, termed either erythrocruorins or hemoglobins, are assembled from many copies of both hemoglobin subunits and nonhemoglobin or ''linker'' subunits. In this paper, we present the crystal structure of Lumbricus erythrocruorin at 5.5-Å resolution, which reveals a remarkable hierarchical organization of 144 oxygen-binding hemoglobin subunits and 36 nonhemoglobin linker subunits. The hemoglobin chains arrange in novel dodecameric substructures. Twelve trimeric linker complexes project triple-stranded helical coiled-coil ''spokes'' toward the center of the complex; interdigitation of these spokes appears crucial for stabilization. The resulting complex of linker chains forms a scaffold on which twelve hemoglobin dodecamers assemble. This structure specifies the unique, self-limited assemblage of a highly cooperative single molecule.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.