The asymptomatic, chronic carrier state of Salmonella enterica serovar Typhi occurs in the bile-rich gallbladder and is frequently associated with the presence of cholesterol gallstones. We have previously demonstrated that salmonellae form biofilms on human gallstones and cholesterol-coated surfaces in vitro and that bile-induced biofilm formation on cholesterol gallstones promotes gallbladder colonization and maintenance of the carrier state. Random transposon mutants of S. enterica serovar Typhimurium were screened for impaired adherence to and biofilm formation on cholesterol-coated Eppendorf tubes but not on glass and plastic surfaces. We identified 49 mutants with this phenotype. The results indicate that genes involved in flagellum biosynthesis and structure primarily mediated attachment to cholesterol. Subsequent analysis suggested that the presence of the flagellar filament enhanced binding and biofilm formation in the presence of bile, while flagellar motility and expression of type 1 fimbriae were unimportant. Purified Salmonella flagellar proteins used in a modified enzyme-linked immunosorbent assay (ELISA) showed that FliC was the critical subunit mediating binding to cholesterol. These studies provide a better understanding of early events during biofilm development, specifically how salmonellae bind to cholesterol, and suggest a target for therapies that may alleviate biofilm formation on cholesterol gallstones and the chronic carrier state.
Aim: Preeclampsia (PE) is a hypertensive disorder of pregnancy associated with activated CD4+ T cells and autoantibodies to angiotensin II type 1 receptor (AT1-AA). We have previously shown that CD4+ T cells isolated from women with PE cause hypertension, increased tumor necrosis factor alpha (TNF-α), endothelin-1, and soluble fms-like tyrosine kinase-1 (sFlt-1) when injected into pregnant nude-athymic rats compared to CD4+ T cells from normal pregnant (NP) women. However, the role of PE CD4+ T cells to cause AT1-AA as a mechanism of hypertension is not known. Our goal was to determine if PE CD4+ T cells stimulate AT1-AA in pregnant nude-athymic rats.
Methods: CD4+ T cells were isolated from human NP and PE placentasand injected into nude-athymic rats on gestational day (GD) 12. In order to examine the role of the PE CD4+ T cells to stimulate B cell secretion of AT1-AA, a subset of the rats receiving PE CD4+ T cells were treated with rituximab on GD 14 or anti-CD40 ligand (anti-CD40L) on GD 12. On GD 19, mean arterial pressure (MAP) and tissues were obtained.
Results: MAP [114 ± 1 mmHg (n = 9)] and AT1-AA [19.8 ± 0.9 beats per minute (bpm, n = 4)] were increased in NP nude + PE CD4+ T cells compared to NP nude + NP CD4+ T cells [98 ± 2 mmHg (n = 7, P < 0.05) and 1.3 ± 0.9 bpm (n = 5, P < 0.05)]. Rituximab (103 ± 2 mmHg, n = 3, P < 0.05) and anti-CD40L (102 ± 1 mmHg, n = 3, P < 0.05) lowered MAP compared to NP nude + PE CD4+ T cells. Circulating a proliferation-inducing ligand (APRIL) and placental angiotensin-converting enzyme 2 (ACE-2) activity was increased in response to PE CD4+ T cells.
Conclusions: These results show that placental CD4+ T cells play an important role in the pathophysiology of PE, by activating B cells secreting AT1-AA to cause hypertension during pregnancy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.