In recent years, there has been a global trend towards a plant-based lifestyle. In the NuEva study, dietary self-reports of 258 participants following one of four diets (Western diet (WD), flexitarians (Flex), vegetarians (VG), and vegans (VN)) were related to fecal microbiome composition. Reduced consumption of animal products (VN < VG < Flex < WD) was associated with a decreased intake of energy (p < 0.05), and an increased intake of soluble and non-soluble dietary fibers (p < 0.05). We observed the lowest average microbiome diversity in vegans and the highest in WD. Compared to WD, VG (p < 0.05) and VN (p < 0.01) differed significantly in their bacterial composition. These data were related to dietary fiber intake. Furthermore, we identified 14 diet-specific biomarkers at the genus level by using LefSe analysis. Of these, 11 showed minimum or maximum counts in WD or VN. While the VN-specific species were inversely associated with cardiovascular risk factors, a positive association was detected for the WD-specific species. Identifying biomarkers for the diets on extreme ends of the spectrum (WD and VN) and their association with cardiovascular risk factors provides a solid evidence base highlighting the potential and the need for the development of personalized recommendations dependent on dietary patterns. Even so, the mechanisms underlying these diet-specific differences in microbiome composition cannot yet be clearly assessed. The elucidation of these associations will provide the basis for personalized nutritional recommendations based on the microbiome.
Plant-based diets usually contain more nutrient-dense foods such as vegetables, legumes, whole grains, and fruits than a standard Western diet. Yet, the amount and especially the bioavailability of several nutrients, such as trace elements, is supposed to be lower in comparison to diets with consumption of animal-derived foods. Based on this, the Nutritional Evaluation (NuEva) study (172 participants) was initiated to compare the trace element status of omnivores, flexitarians, vegetarians, and vegans. Serum selenium, zinc, and copper concentrations and biomarkers were evaluated at baseline and during a 12-month intervention with energy- and nutrient-optimized menu plans. The implementation of optimized menu plans did not substantially influence the status of trace elements. At baseline, serum selenium biomarkers were lower in vegetarians and vegans compared to omnivores and flexitarians. The zinc intake of vegetarians and vegans was significantly lower compared to omnivores, whereas the Phytate Diet Score was increased. Accordingly, total serum zinc concentrations were reduced in vegans which was, however, only significant in women and was further supported by the analysis of free zinc. Regarding copper status, no differences were observed for total serum copper. Overall, we identified selenium and zinc as critical nutrients especially when maintaining a vegan diet.
A 14-day randomized controlled study with a parallel design was conducted with 80 healthy participants. Intervention groups I (IG1) and II (IG2) received a defined background diet and consumed a smoothie enriched with either 15 g of Chlorella dry weight (d.w.) or 15 g of Microchloropsis d.w. daily. Control group II (CG2) received a defined background diet without the smoothie. Control group I (CG1) received neither. Blood samples and 24-h urine were collected at the beginning and the end of the study. Serum concentrations of 25-hydroxyvitamin D3, vitamin D3, selenium, iron, ferritin, transferrin saturation, total cholesterol, low-density lipoprotein (LDL) cholesterol, high-density lipoprotein (HDL) cholesterol, non-HDL cholesterol and the LDL-cholesterol/HDL cholesterol ratio decreased in IG1 (p < 0.05), while 25-hydroxyvitamin D2 increased (p < 0.05). In IG2, vitamin D3, 25-hydroxyvitamins D2 and D3 decreased (p < 0.05), while concentrations of fatty acids C20:5n3 and C22:5n3 increased. Serum and urine uric acid increased in IG1 and IG2 (p < 0.05). Microchloropsis is a valuable source of n3 fatty acids, as is Chlorella of vitamin D2. Regular consumption of Chlorella may affect the iron and selenium status negatively but may impact blood lipids positively. An elevated uric acid concentration in blood and urine following the regular consumption of microalgae poses potential risks for human health.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.