Poly(vinylidene difluoride) (PVDF) has been widely used in piezoelectric applications as films and nanofiber mats, but there are limited publications on piezoelectric wet‐spun fibers. In this work, PVDF fibers were prepared using the wet spinning method, and the processing parameters, including the drawing ratio and heat setting temperature, were controlled in the continuous wet spinning system to increase the β‐phase crystallinity of the fibers. In addition, the wet‐spun PVDF fibers were compressed by a rolling press to eliminate voids in the fibers. Then, the compressed PVDF fibers were poled to align the molecular dipoles. The crystal structures of the PVDF fibers were investigated using X‐ray diffraction and Fourier‐transform infrared spectroscopy. Single filament tensile tests were performed to measure the tensile strength of the fibers. The morphologies of the PVDF fibers with respect to the processing parameters were observed by scanning electron microscope (SEM) and polarization optical microscopy. The piezoelectric constant of the prepared PVDF fibers was then measured using a d33 meter. The wet‐spun PVDF fibers showed the highest β‐phase and piezoelectric constants when the drawing ratio and heat setting temperature were 6 and 150 °C, respectively. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018, 135, 45712.
Polyvinylidene fluoride (PVDF) as a representative polymer with the piezoelectric property has been studied since the 1960s.Crystalline structure of poly(vinylidene fluoride) polymer is composed of five different crystal structure of the polymer as a semi-crystalline. Among the various crystal structures, β-type crystal exhibits a piezoelectricity because the permanent dipoles are aligned in one direction. Generally β-form crystal structure can be obtained through the transformation of the α-form crystal structure by the stretching and it can increase the amount through the after treatment as poling process after stretching. β-form crystal structure the PVDF fibers produced by wet spinning is formed through a diffusion mechanism of a polar solvent in the coagulation bath. However, it has a disadvantage that the diffusion path of the solvent remains as pores in the fiber because the fiber solidification occurs simultaneously with the diffusion of the polar solvent. These pores play a role in reducing effect of poling process owing to effect of disturbances acting on the polarization by the electric field. In this work, the drying method using the microwave was introduced to remove more effectively the residual solvent and the pore within PVDF fibers produced through wet-spinning process and piezoelectric PVDF fibers was produced by transformation of the remaining α form crystal structure into β-crystal structure through the stretching process.초 록: Polyvinylidene fluoride (PVDF)는 압전성을 나타내는 대표적인 고분자로
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.