This manuscript presents the design of a W-band receiver in which an radio frequency-low noise amplifier (RF-LNA), a wideband mixer, intermediate frequency (IF) amplification, a local oscillator frequency (LO) tripler and a driving amplifier are all integrated into one single chip of 1050 × 820 μm 2. To effectively extend the mixer's IF bandwidth while retaining its conversion gain, impacts of the mixing transistor's drain bias and output loading impedance are explored using a dual-modulation conversion-matrix method, which allows both the LO-induced transconductance modulation and channel-conductance modulation to be considered simultaneously. It is shown that, by merging the input capacitance of the IF amplifier into a highimpedance artificial transmission line, an actively biased mixer can have constant conversion gain over broad bandwidth. A 77-110 GHz 65 nm-complementary metal-oxide-semiconductor (CMOS) receiver with 33 GHz IF bandwidth is then designed and measured. Its conversion gain and noise figure are 10 and 20 dB, respectively, and the input-referred P1 dB is −15 dBm; the overall power consumption is 330 mW under 1.3 V drain bias.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.