To evaluate the clinical application effect of spiral computed tomography (CT) three-dimensional (3D) reconstruction based on artificial intelligence in transcatheter aortic valve implantation (TAVI), a CT 3D reconstruction model based on deep convolutional neural networks (DCNN) was established in this research, which was compared with the model-based iterative reconstruction (MBIR) and used in clinical practice. Then, 62 patients with aortic stenosis (AS) who underwent TAVI surgery were recruited as the research objects. The accuracy, sensitivity, and specificity of the multislice spiral CT scan (MSCT) and transthoracic echocardiography (TTE) in predicting the type of TAVI surgical valve were compared and analyzed. The results showed that the mean absolute error (MAE) (0.01) and root mean square error (RMSE) (0.086) of the MBIR model were higher than the reconstruction model in this research. The structural similarity (SSIM) (0.831) and peak signal-to noise ratio (PSNR) (32.77 dB) of the MBIR model were lower than the reconstruction model, and the differences were considerable ( P < 0.05 ). Of the valve models selected based on the TTE measurement results, 35 cases were accurately predicted and 27 cases were incorrectly predicted. The accuracy of MSCT was 87.1%, the specificity was 98.84%, and the sensitivity was 92.87%; all of which were significantly higher than TTE ( P < 0.05 ). In summary, compared with the MBIR reconstruction model, the imaging results of the model established in this research were closer to the real image. Compared with TTE, MSCT had higher accuracy, sensitivity, and specificity and can provide more accurate preoperative predictions for patients undergoing TAVI surgery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.