Abstract. In the domain of landslide risk science, landslide susceptibility mapping (LSM) is very important, as it helps spatially identify potential landslide-prone regions. This study used a statistical ensemble model (frequency ratio and evidence belief function) and two machine learning (ML) models (random forest and XGBoost; eXtreme Gradient Boosting) for LSM in the province of Belluno (region of Veneto, northeastern Italy). The study investigated the importance of the conditioning factors in predicting landslide occurrences using the mentioned models. In this paper, we evaluated the importance of the conditioning factors in the overall prediction capabilities of the statistical and ML algorithms. By the trial-and-error method, we eliminated the least “important” features by using a common threshold of 0.30 for statistical and 0.03 for ML algorithms. Conclusively, we found that removing the least important features does not impact the overall accuracy of LSM for all three models. Based on the results of our study, the most commonly available features, for example, the topographic features, contributes to comparable results after removing the least important ones, namely the aspect plan and profile curvature, topographic wetness index (TWI), topographic roughness index (TRI), and normalized difference vegetation index (NDVI) in the case of the statistical model and the plan and profile curvature, TWI, and topographic position index (TPI) for ML algorithms. This confirms that the requirement for the important conditioning factor maps can be assessed based on the physiography of the region.
Event-based landslide inventories are essential sources to broaden our understanding of the causal relationship between triggering events and the occurring landslides. Moreover, detailed inventories are crucial for the succeeding phases of landslide risk studies like susceptibility and hazard assessment. The openly available inventories differ in the quality and completeness levels. Event-based landslide inventories are created based on manual interpretation, and there can be significant differences in the mapping preferences among interpreters. To address this issue, we used two different datasets to analyze the potential of U-Net and machine learning approaches for automated landslide detection in the Himalayas. Dataset-1 is composed of five optical bands from the RapidEye satellite imagery. Dataset-2 is composed of the RapidEye optical data, and ALOS-PALSAR derived topographical data. We used a small dataset consisting of 239 samples acquired from several training zones and one testing zone to evaluate our models’ performance using the fully convolutional U-Net model, Support Vector Machines (SVM), K-Nearest Neighbor, and the Random Forest (RF). We created thirty-two different maps to evaluate and understand the implications of different sample patch sizes and their effect on the accuracy of landslide detection in the study area. The results were then compared against the manually interpreted inventory compiled using fieldwork and visual interpretation of the RapidEye satellite image. We used accuracy assessment metrics such as F1-score, Precision, Recall, and Mathews Correlation Coefficient (MCC). In the context of the Nepali Himalayas, employing RapidEye images and machine learning models, a viable patch size was investigated. The U-Net model trained with 128 × 128 pixel patch size yields the best MCC results (76.59%) with the dataset-1. The added information from the digital elevation model benefited the overall detection of landslides. However, it does not improve the model’s overall accuracy but helps differentiate human settlement areas and river sand bars. In this study, the U-Net achieved slightly better results than other machine learning approaches. Although it can depend on architecture of the U-Net model and the complexity of the geographical features in the imagery, the U-Net model is still preliminary in the domain of landslide detection. There is very little literature available related to the use of U-Net for landslide detection. This study is one of the first efforts of using U-Net for landslide detection in the Himalayas. Nevertheless, U-Net has the potential to improve further automated landslide detection in the future for varied topographical and geomorphological scenes.
Multiple landslide events are common around the globe. They can cause severe damage to both human lives and infrastructures. Although a huge quantity of research has been shaped to address rapid mapping of landslides by optical Earth Observation (EO) data, various gaps and uncertainties are still present when dealing with cloud obscuration and 24/7 operativity. To address the issue, we explore the usage of SAR data over the eastern Iburi sub-prefecture of Hokkaido, Japan. In the area, about 8000 co-seismic landslides were triggered by an Mw 6.6 earthquake on 6 September 2018, at 03.08 local time (JST). In the following study, we modify a Deep Learning (DL) convolutional neural network (CNN) architecture suited for pixel-based classification purposes, the so-called Attention U-Net (Attn-U-Net) and we employ it to evaluate the potential of bi- and tri-temporal SAR amplitude data from the Sentinel-1 satellite and slope angle to map landslides even under thick cloud cover. Four different datasets, composed of two different band combinations per two satellite orbits (ascending and descending) are analyzed. Moreover, the impact of augmentations is evaluated independently for each dataset. The models’ predictions are compared against an accurate landslide inventory obtained by manual mapping on pre-and post-event PlanetScope imagery through F1-score and other common metrics. The best result was yielded by the augmented ascending tri-temporal SAR composite image (61% F1-score). Augmentations have a positive impact on the ascending Sentinel-1 orbit, while metrics decrease when augmentations are applied on descending path. Our findings demonstrate that combining SAR data with other data sources may help to map landslides quickly, even during storms and under deep cloud cover. However, further investigations and improvements are still needed, this being one of the first attempts in which the combination of SAR data and DL algorithms are employed for landslide mapping purposes.
Abstract. Multiple landslide events occur often across the world which have the potential to cause significant harm to both human life and property. Although a substantial amount of research has been conducted to address mapping of landslides using Earth observation (EO) data, several gaps and uncertainties remain with developing models to be operational at the global scale. The lack of a high-resolution globally distributed and event-diverse dataset for landslide segmentation poses a challenge in developing machine learning models that can accurately and robustly detect landslides in various regions, as the limited representation of landslide and background classes can result in poor generalization performance of the models. To address this issue, we present the High-Resolution Global landslide Detector Database (HR-GLDD), a high-resolution (HR) satellite dataset (PlanetScope, 3 m pixel resolution) for landslide mapping composed of landslide instances from 10 different physiographical regions globally in South and South-East Asia, East Asia, South America, and Central America. The dataset contains five rainfall-triggered and five earthquake-triggered multiple landslide events that occurred in varying geomorphological and topographical regions in the form of standardized image patches containing four PlanetScope image bands (red, green, blue, and NIR) and a binary mask for landslide detection. The HR-GLDD can be accessed through this link: https://doi.org/10.5281/zenodo.7189381 (Meena et al., 2022a, c). HR-GLDD is one of the first datasets for landslide detection generated by high-resolution satellite imagery which can be useful for applications in artificial intelligence for landslide segmentation and detection studies. Five state-of-the-art deep learning models were used to test the transferability and robustness of the HR-GLDD. Moreover, three recent landslide events were used for testing the performance and usability of the dataset to comment on the detection of newly occurring significant landslide events. The deep learning models showed similar results when testing the HR-GLDD at individual test sites, thereby indicating the robustness of the dataset for such purposes. The HR-GLDD is open access and it has the potential to calibrate and develop models to produce reliable inventories using high-resolution satellite imagery after the occurrence of new significant landslide events. The HR-GLDD will be updated regularly by integrating data from new landslide events.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.