In this paper, an effective method for the classification process simulation in 75¬mm hydrocyclone is considered. The simulation results and computational time are compared using Reynolds stress model (RSM) and different large eddy simulation (LES) subgrid-scale models as turbulence models, and the volume of fluid model (VOF) as a multiphase model. The Lagrangian discrete phase model (DPM) is used to simulate the classification process of particles. As the experimental result for comparison of simulation results, Hsieh's experimental data are used. When the different LES subgrid-scale models are used, the solution converges stably by various solution convergence methods without increasing the grid numbers or reducing the size of time steps than RSM model. As a result, it is confirmed that when an appropriate simulation method is applied with the LES-WMLES S-Omega model, more accurate axial water flow velocity distribution and particle classification simulation results can be obtained at a computational cost similar to that of using the RSM model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.