Six weeks of resistance training was effective at increasing strength, muscle quality, and muscle morphology in older adult men and women.
This investigation compared the effect of high-volume (VOL) versus high-intensity (INT) resistance training on stimulating changes in muscle size and strength in resistance-trained men. Following a 2-week preparatory phase, participants were randomly assigned to either a high-volume (VOL; n = 14, 4 × 10–12 repetitions with ∼70% of one repetition maximum [1RM], 1-min rest intervals) or a high-intensity (INT; n = 15, 4 × 3–5 repetitions with ∼90% of 1RM, 3-min rest intervals) training group for 8 weeks. Pre- and posttraining assessments included lean tissue mass via dual energy x-ray absorptiometry, muscle cross-sectional area and thickness of the vastus lateralis (VL), rectus femoris (RF), pectoralis major, and triceps brachii muscles via ultrasound images, and 1RM strength in the back squat and bench press (BP) exercises. Blood samples were collected at baseline, immediately post, 30 min post, and 60 min postexercise at week 3 (WK3) and week 10 (WK10) to assess the serum testosterone, growth hormone (GH), insulin-like growth factor-1 (IGF1), cortisol, and insulin concentrations. Compared to VOL, greater improvements (P < 0.05) in lean arm mass (5.2 ± 2.9% vs. 2.2 ± 5.6%) and 1RM BP (14.8 ± 9.7% vs. 6.9 ± 9.0%) were observed for INT. Compared to INT, area under the curve analysis revealed greater (P < 0.05) GH and cortisol responses for VOL at WK3 and cortisol only at WK10. Compared to WK3, the GH and cortisol responses were attenuated (P < 0.05) for VOL at WK10, while the IGF1 response was reduced (P < 0.05) for INT. It appears that high-intensity resistance training stimulates greater improvements in some measures of strength and hypertrophy in resistance-trained men during a short-term training period.
BackgroundN-terminal peptide of procollagen type III (P3NP) and C-terminal agrin fragment (CAF) are circulating biomarkers that are related to lean body mass in older adults. P3NP is a circulating marker reflective of muscular structural remodeling while CAF is a circulating marker of neuromuscular remodeling. As resistance exercise is an established intervention that can effectively improve muscle quality, we sought to evaluate circulating biomarker changes corresponding to a resistance exercise intervention in older adults.MethodsTwenty-three older adults (aged 61 to 85 years) were randomized into an intervention (6-week resistance training) or control group. Resting circulating P3NP, CAF, lean body mass (LBM), muscle cross-sectional area (CSA), muscle strength, and muscle quality were determined at baseline and after the intervention or control period by enzyme-linked immunosorbent assay, dual-energy X-ray absorptiometry, ultrasound, leg extension, and relative strength, respectively. Changes in circulating biomarkers and measures of muscle mass and quality were evaluated with repeated-measures analysis of variance; clinical interpretations were made with magnitude-based inferences, and relationships between variables were evaluated with bivariate correlations.ResultsThe short-term resistance exercise intervention was effective at improving muscle quality by 28 % (p < 0.001) despite no significant changes in lean body mass. Baseline circulating P3NP was somewhat lower in older women (4.15 ± 1.9 ng/mL) compared with older men (4.81 ± 2.1 ng/mL). The exercise intervention tended to increase circulating P3NP (baseline = 4.53 ± 1.80 to post = 4.88 ± 1.86) and was significantly correlated with changes in LBM (r = 0.422, p = 0.045). At baseline, women (3.91 ± 1.12 pg/mL) had somewhat higher circulating CAF than men (3.47 ± 1.37 pg/mL). Circulating CAF increased by 10.4 % (3.59 to 4.00 pg/ml) in older adults following 6 weeks of resistance exercise training. Changes in circulating CAF were significantly related to changes in CSA of the vastus lateralis (r = 0.542, p = 0.008).ConclusionsAssessment of P3NP and CAF from blood samples may provide minimally invasive and clinically informative measures of skeletal muscle status in older adults. Circulating CAF appears to increase in response to short-term resistance exercise training in older adults to a clinically meaningful magnitude. Changes in circulating P3NP in response to the intervention were less clear but appear to reflect muscle hypertrophy. Further research is needed to elucidate whether P3NP, CAF, or other biomarkers can reflect muscle qualitative adaptations with larger and longer studies.
Wang, R, Hoffman, JR, Tanigawa, S, Miramonti, AA, La Monica, MB, Beyer, KS, Church, DD, Fukuda, DH, and Stout, JR. Isometric mid-thigh pull correlates with strength, sprint, and agility performance in collegiate rugby union players. J Strength Cond Res 30(11): 3051-3056, 2016-The purpose of this investigation was to examine the relationships between isometric mid-thigh pull (IMTP) force and strength, sprint, and agility performance in collegiate rugby union players. Fifteen members of a champion-level university's club rugby union team (mean ± SD: 20.67 ± 1.23 years, 1.78 ± 0.06 m, and 86.51 ± 14.18 kg) participated in this investigation. One repetition maximum (1RM) squat, IMTP, speed (40 m sprint), and agility (proagility test and T-test) were performed during 3 separate testing sessions. Rate of force development (RFD) and force output at 30, 50, 90, 100, 150, 200, and 250 milliseconds of IMTP, as well as the peak value were determined. Pearson product-moment correlation analysis was used to examine the relationships between these measures. Performance in the 1RM squat was significantly correlated to the RFD between 90 and 250 milliseconds from the start of contraction (r's ranging from 0.595 to 0.748), and peak force (r = 0.866, p ≤ 0.05). One repetition maximum squat was also correlated to force outputs between 90 and 250 milliseconds (r's ranging from 0.757 to 0.816, p ≤ 0.05). Sprint time over the first 5 m in the 40 m sprint was significantly (p ≤ 0.05) correlated with peak RFD (r = -0.539) and RFD between 30 and 50 milliseconds (r's = -0.570 and -0.527, respectively). Time for the proagility test was correlated with peak RFD (r = -0.523, p ≤ 0.05) and RFD between 30 and 100 milliseconds (r's ranging from -0.518 to -0.528, p's < 0.05). Results of this investigation indicate that IMTP variables are significantly associated with strength, agility, and sprint performance. Future studies should examine IMTP as a potential tool to monitor athletic performance during the daily training of rugby union players.
The purpose of this study was to determine the relationship between visual tracking speed (VTS) and reaction time (RT) on basketball-specific measures of performance. Twelve professional basketball players were tested before the 2012-13 season. Visual tracking speed was obtained from 1 core session (20 trials) of the multiple object tracking test, whereas RT was measured by fixed- and variable-region choice reaction tests, using a light-based testing device. Performance in VTS and RT was compared with basketball-specific measures of performance (assists [AST]; turnovers [TO]; assist-to-turnover ratio [AST/TO]; steals [STL]) during the regular basketball season. All performance measures were reported per 100 minutes played. Performance differences between backcourt (guards; n = 5) and frontcourt (forward/centers; n = 7) positions were also examined. Relationships were most likely present between VTS and AST (r = 0.78; p < 0.003), STL (r = 0.77; p < 0.003), and AST/TO (r = 0.78; p < 0.003), whereas a likely relationship was also observed with TO (r = 0.49; p < 0.109). Reaction time was not related to any of the basketball-specific performance measures. Backcourt players were most likely to outperform frontcourt players in AST and very likely to do so for VTS, TO, and AST/TO. In conclusion, VTS seems to be related to a basketball player's ability to see and respond to various stimuli on the basketball court that results in more positive plays as reflected by greater number of AST and STL and lower turnovers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.