SummaryThe velvet gene, veA, co-ordinates asexual and sexual development in the homothallic fungal species Aspergillus nidulans. Studies in Aspergillus parasiticus and Aspergillus fumigatus demonstrated that veA also regulates morphological differentiation in these species. Whether veA has the same role in morphogenesis in other fungal genera has not been investigated. In this work, we studied the role of the veA homologue, FvVE1, in the heterothallic fungus Fusarium verticillioides. Deletion of FvVE1 suppressed aerial hyphal growth and reduced colony surface hydrophobicity on solid media. In submerged cultures, FvVE1 deletion caused alterations in hyphal polarity, marked activation of conidiation and yeastlike growth. The latter was promoted by shaking to increase aeration of cultures. In addition, FvVE1 deletion markedly increased the ratio of macroconidia to microconidia. Supplementation of osmotic stabilizers restored the wild-type phenotype to deletion mutants, suggesting phenotypic alterations caused by FvVE1 deletion are related to cell wall defects. This is consistent with the hypersensitivity of FvVE1 deletion mutants to SDS and with the significant reduction in the mannoprotein content of mutants compared with the wild-type strain. However, no dramatic cell wall alterations were observed when mutants were examined by transmission electron microscopy. Our data strongly suggest that FvVE1 is important for cell wall integrity, cell surface hydrophobicity, hyphal polarity and conidiation pattern.
The veA gene positively regulates sterigmatocystin production in Aspergillus nidulans and aflatoxin production in A. parasiticus and A. flavus. Whether veA homologs have a role in regulating secondary metabolism in other fungal genera is unknown. In this study, we examined the role of the veA homolog, FvVE1, on production of two mycotoxin families, fumonisins and fusarins, in the important corn pathogen F. verticillioides. We found that FvVE1 deletion completely suppressed fumonisin production on two natural substrates, corn and rice. Furthermore, our results revealed that FvVE1 is necessary for the expression of the pathway-specific regulatory gene FUM21 and structural genes in the fumonisin biosynthetic gene (FUM) cluster. FvVE1 deletion also blocked production of fusarins. The effects of FvVE1 deletion on the production of these toxins were found to be the same in two separate mating types. Our results strongly suggest that FvVE1 play an important role in regulating mycotoxin production in F. verticillioides.
BACKGROUNDThe development of novel highly efficacious fungicides that lack cross‐resistance is extremely desirable. Fenpicoxamid (Inatreq™ active) possesses these characteristics and is a member of a novel picolinamide class of fungicides derived from the antifungal natural product UK‐2A.RESULTSFenpicoxamid strongly inhibited in vitro growth of several ascomycete fungi, including Zymoseptoria tritici (EC50, 0.051 mg L−1). Fenpicoxamid is converted by Z. tritici to UK‐2A, a 15‐fold stronger inhibitor of Z. tritici growth (EC50, 0.0033 mg L−1). Strong fungicidal activity of fenpicoxamid against driver cereal diseases was confirmed in greenhouse tests, where activity on Z. tritici and Puccinia triticina matched that of fluxapyroxad. Due to its novel target site (Qi site of the respiratory cyt bc1 complex) for the cereals market, fenpicoxamid is not cross‐resistant to Z. tritici isolates resistant to strobilurin and/or azole fungicides. Across multiple European field trials Z. tritici was strongly controlled (mean, 82%) by 100 g as ha−1 applications of fenpicoxamid, which demonstrated excellent residual activity.CONCLUSIONSThe novel chemistry and biochemical target site of fenpicoxamid as well as its lack of cross‐resistance and strong efficacy against Z. tritici and other pathogens highlight the importance of fenpicoxamid as a new tool for controlling plant pathogenic fungi. © 2017 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Wounded strawberry fruit produces a diverse group of volatile compounds including aldehydes, alcohols, and esters derived from the lipoxygenase (LOX) and hydroperoxide lyase (HPL) pathways. Because the wound volatiles may play an important role in plant-fungal interaction, the goal of this study was to develop a greater understanding about the biosynthesis of the major wound volatile, trans-2-hexenal (t-2-H), produced by strawberry fruit upon wounding. To that end, composition and quantity of total and free fatty acids of control and wounded strawberry fruit were analyzed. In addition, activities of the key enzymes, LOX and HPL, and production of C6 aldehydes were determined. Intact strawberry fruit did not produce detectable t-2-H which is derived from alpha-linolenic acid (18:3). However, in response to wounding by bruising, strawberry fruit emitted t-2-H and its precursor cis-3-hexenal (c-3-H). The level of total lipid 18:3 in the fruit increased 2-fold in response to wounding, whereas free 18:3 declined slightly ( approximately 30%). At 10 min following wounding, fruit exhibited a 25% increase in LOX activity, which leads to the production of 13-hydroperoxyoctadecatrienoic acid (13-HPOT) from 18:3. The activity of HPL, which catalyzes formation of cis-3-hexenal from 13-HPOT, increased 2-fold by 10 min after wounding. Thus, during a 15 min period after wounding, free 18:3 substrate availability and the activity of two key enzymes, LOX and HPL, changed in a manner consistent with increased c-3-H and t-2-H biosynthesis.
The veA or velvet gene is necessary for biosynthesis of mycotoxins and other secondary metabolites in Aspergillus species. In addition, veA has also been demonstrated to be necessary for normal seed colonization in Aspergillus flavus and Aspergillus parasiticus. The present study shows that veA homologues are broadly distributed in fungi, particularly in Ascomycetes. The Fusarium verticillioides veA orthologue, FvVE1, is also required for the synthesis of several secondary metabolites, including fumonisin and fusarins. This study also shows that maize plants grown from seeds inoculated with FvVE1 deletion mutants did not show disease symptoms, while plants grown from seeds inoculated with the F. verticillioides wildtype and complementation strains clearly showed disease symptoms under the same experimental conditions. In this latter case, the presence of lesions coincided with accumulation of fumonisins in the plant tissues, and only these plant tissues had elevated levels of sphingoid bases and their 1-phosphate derivatives, indicating inhibition of ceramide synthase and disruption of sphingolipid metabolism. The results strongly suggest that FvVE1 is necessary for pathogenicity by F. verticillioides against maize seedlings. The conservation of veA homologues among ascomycetes suggests that veA could play a pivotal role in regulating secondary metabolism and associated pathogenicity in other fungi.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.