A new method is presented to identify the truly interfacial molecules at fluid/fluid interfaces seen at molecular resolution, a situation that regularly occurs in computer simulations. In the new method, the surface is scanned by moving a probe sphere of a given radius along a large set of test lines that are perpendicular to the plane of the interface. The molecules that are hit by the probe spheres are regarded as interfacial ones, and the position of the test spheres when they are in contact with the interfacial molecules give an estimate of the surface. The dependence of the method on various parameters, in particular, on the size of the probe sphere is discussed in detail. Based on the list of molecules identified as truly interfacial ones, two measures of the molecular scale roughness of the surface are proposed. The bivariate distribution of the lateral and normal distances of two points of the interface provides a full description of the molecular scale morphology of the surface in a statistical sense. For practical purposes two parameters related to the dependence of the average normal distance of two surface points on their lateral distance can be used. These two parameters correspond to the frequency and amplitude of the surface roughness, respectively. The new method is applied for the analysis of the molecular level structure of the liquid-vapor interface of water. As an immediate result of the application of the new method it is shown that the orientational preferences of the interfacial water molecules depend only on the local curvature of the interface, and hence the molecules located at wells of concave curvature of the rippled surface prefer the same orientations as waters located at the surface of small apolar solutes. The vast majority of the truly interfacial molecules are found to form a strongly percolating two-dimensional hydrogen bonded network at the surface, whereas no percolation is observed within the second molecular layer beyond the surface.
The adsorption isotherm of methanol on ice at 200 K has been determined both experimentally and by using the Grand Canonical Monte Carlo computer simulation method. The experimental and simulated isotherms agree well with each other; their deviations can be explained by a small (about 5 K) temperature shift in the simulation data and, possibly, by the non-ideality of the ice surface in the experimental situation. The analysis of the results has revealed that the saturated adsorption layer is monomolecular. At low surface coverage, the adsorption is driven by the methanol-ice interaction; however, at full coverage, methanol-methanol interactions become equally important. Under these conditions, about half of the adsorbed methanol molecules have one hydrogen-bonded water neighbor, and the other half have two hydrogen-bonded water neighbors. The vast majority of the methanols have a hydrogen-bonded methanol neighbor, as well.
Molecular dynamics simulations of the vapor-liquid interface of water-methanol mixtures of five different compositions were performed on the canonical (N,V,T) ensemble at 298 K. In addition, the vapor-liquid interface of the two neat systems was simulated, as well. The obtained configurations were analyzed by means of the novel identification of truly interfacial molecules method, which provides a full list of the molecules that are right at the surface (i.e., at the boundary of the two phases). The molecular level roughness of the surface, the adsorption of the methanol molecules at the surface layer, the orientation of the surface molecules, the residence time of the molecules at the surface layer, as well as the surface aggregation of the molecules were analyzed in detail. Both the frequency and the amplitude of the surface roughness were found to become larger with an increasing methanol content. This effect was found to be stronger for the amplitude, which falls in the range of 2-4 A, depending on the composition of the system. Methanol was found to be adsorbed at the surface layer, being preferentially at the humps of the molecularly rough surface. Surface methanol prefers to orient in such a way that the O-CH(3) bond remains perpendicular to the macroscopic plane of the surface, pointing the methyl group to the vapor phase. The main orientational preference of the water molecules is to lie parallel to the surface. Methanol was found to remain considerably longer at the surface layer of the mixed systems than water. Thus, contrary to the fact that the residence times of the two molecules were found to be rather similar to each other at the surface of their neat liquids, the residence time of the methanol molecules was an order of magnitude larger than that of water molecules at the surface of their mixtures. A strong lateral microscopic segregation of the molecules was observed at the surface layer; the minor component of the system (irrespective of whether it was water or methanol) was found to form two-dimensional aggregates, leaving the rest of the surface empty for the major component. The effect of the vicinity of the vapor phase on the properties of the molecules was found to vanish very quickly: the composition of the second layer as well as the properties of the molecules of this layer (e.g., dynamics and orientation) did not differ considerably from those in the bulk liquid phase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.