Micro-supercapacitors have attracted considerable research attention for on-chip energy storage due to their unique properties and potential applications in various smart electronic devices.Although significant advances have been reported on their power performances, they still cannot compete with micro-batteries in terms of energy densities for mobile, portable and self-powered applications. Herein, we demonstrate the fabrication of vertically aligned carbon nanowalls (CNW) decorated with porous ruthenium oxide as a high-performance electrode for all-solidstate micro-supercapacitors. The decorated CNW electrode, essentially consisting of thin carbon sheets assembled from graphene domains, delivers specific capacitance in excess of 1000 mF cm -2 (which is three orders of magnitude higher than state-of-the-art microsupercapacitors) and energy density comparable to that of lithium-ion micro-batteries, but with superior power and cycling stability. Our findings demonstrate a route towards the integration of microfabricated supercapacitors combining fast charge/discharge rates with high energy densities.
A short description of approaches for carbon nanostructures synthesis is made and the advantages of using plasma during the growth are presented. As a particular example of a plasma based technique we detail the process of downstream carbon nanowall (CNW) synthesis by a radiofrequency expanding plasma beam. The technique combines magnetron sputtering for catalyst deposition and plasma enhanced chemical vapor deposition (main gas: argon, active gas: hydrogen, precursor gas: acetylene) for carbon growth in a single reactor. The analysis focuses on the correlation between the material properties and the plasma characteristics measured at different points along the flow axis, aiming to reveal the importance of plasma species in the growth process. The material properties were investigated by scanning and transmission electron microscopy, whereas the plasma data were obtained by optical emission spectroscopy, Langmuir probes and mass spectrometry. CNWs with a large area and well isolated from each other are obtained at an optimum distance from the precursor injection point where the plasma presents an enhanced content of carbon nanoclusters. The possible processes responsible for the growth are discussed.
This work is focusing on generation, time evolution, and impact on the electrical performance of silicon diodes impaired by radiation induced active defects. n-type silicon diodes had been irradiated with electrons ranging from 1.5 MeV to 27 MeV. It is shown that the formation of small clusters starts already after irradiation with high fluence of 1.5 MeV electrons. An increase of the introduction rates of both point defects and small clusters with increasing energy is seen, showing saturation for electron energies above ∼15 MeV. The changes in the leakage current at low irradiation fluence-values proved to be determined by the change in the configuration of the tri-vacancy (V3). Similar to V3, other cluster related defects are showing bistability indicating that they might be associated with larger vacancy clusters. The change of the space charge density with irradiation and with annealing time after irradiation is fully described by accounting for the radiation induced trapping centers. High resolution electron microscopy investigations correlated with the annealing experiments revealed changes in the spatial structure of the defects. Furthermore, it is shown that while the generation of point defects is well described by the classical Non Ionizing Energy Loss (NIEL), the formation of small defect clusters is better described by the “effective NIEL” using results from molecular dynamics simulations.
The formation of Ni silicides is studied by transmission electron microscopy during in situ heating experiments of 12 nm Ni layers on blanket silicon, or in patterned structures covered with a thin chemical oxide. It is shown that the first phase formed is the NiSi 2 which grows epitaxially in pyramidal crystals. The formation of NiSi occurs quite abruptly around 400°C when a monosilicide layer covers the disilicide grains and the silicon in between. The NiSi phase remains stable up to 800°C, at which temperature the layer finally fully transforms to NiSi 2. The monosilicide grains show different epitaxial relationships with the Si substrate. Ni 2 Si is never observed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.