This study confirmed the high prevalence of RLS among dialysis patients and the associations between the severity of RLS and the risk of new cardiovascular events and higher short-term mortality.
On-line high-efficiency HDF resulted in enhanced removal and lower basal levels of small, medium-sized and protein-bound solutes, which are markers or causative agents of uraemic pathologies, mainly inflammation, secondary hyperparathyroidism and dyslipidaemia. This may contribute to reducing uraemic complications and possibly to improving patient survival.
TGF-beta1 was significantly reduced in hemodialysis patients, in particular in those with severe cardiovascular disease. Baseline TGF-beta1, diabetes mellitus and serum albumin levels proved to be the only independent contributors to atherosclerotic risk in dialysis patients.
A mathematical model of solute kinetics oriented to the simulation of hemodialysis is presented. It includes a three-compartment model of body fluids (plasma, interstitial and intracellular), a two-compartment description of the main solutes (K+, Na+, Cl-, urea, HCO3-, H+), and acid-base equilibrium through two buffer systems (bicarbonate and noncarbonic buffers). Tentative values for the main model parameters can be given a priori, on the basis of body weight and plasma concentration values measured before beginning the session. The model allows computation of the amount of sodium removed during hemodialysis, and may enable the prediction of plasma volume and osmolarity changes induced by a given sodium concentration profile in the dialysate and by a given ultrafiltration profile. Model predictions are compared with clinical data obtained during 11 different profiled hemodialysis sessions, both with all parameters assigned a priori, and after individual estimation of dialysances and mass-transfer coefficients. In most cases, the agreement between the time pattern of model solute concentrations in plasma and clinical data was satisfactory. In two sessions, blood volume changes were directly measured in the patient, and in both cases the agreement with model predictions was acceptable. The present model can be used to improve the dialysis session taking some characteristics of individual patients into account, in order to minimize intradialytic unbalances (such as hypotension or disequilibrium syndrome).
Early warfarin therapy allows a significant reduction in TCC thrombotic complications and an improvement in both arterial and venous fluxes in comparison with the same therapy administered after the first TCC thrombotic/malfunction event. This therapy did not induce any bleeding complications in the patients included in the study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.