The Large Hadron Collider (LHC) at CERN will use high field superconducting magnets operating in pressurized superfluid helium (He II) at 1.9 K. Cold safety valves, with their inlet in direct contact with the He II bath, will be required to protect the cold masses in case of a magnet resistive transition. In addition to the safety function, the valves must limit their conduction heat load to the He II to below 0.3 W and limit their mass leakage when closed to below 0.01 g/s at 1.9 K with 100 mbar differential pressure. The valves must also have a high tolerance to contaminating particles in the liquid helium. The compliance with the specified performance is of crucial importance for the LHC cryogenic operation. An extensive test program is therefore being carried out on prototype industrial valves produced by four different manufacturers. The behavior of these valves has been investigated at room temperature and at 77 K. Precise heat load and mass leak measurements have been performed on a dedicated test facility at superfluid helium temperature. Results of cold and warm tests performed on as-delivered valves are presented. ABSTRACTThe Large Hadron Collider (LHC) at CERN will use high field superconducting magnets operating in pressurized superfluid helium (He II) at 1.9 K. Cold safety valves, with their inlet in direct contact with the He II bath, will be required to protect the cold masses in case of a magnet resistive transition. In addition to the safety function, the valves must limit their conduction heat load to the He II to below 0.3 W and limit their mass leakage when closed to below 0.01 g/s at 1.9 K with 100 mbar differential pressure. The valves must also have a high tolerance to contaminating particles in the liquid helium. The compliance with the specified performance is of crucial importance for the LHC cryogenic operation. An extensive test program is therefore being carried out on prototype industrial valves produced by four different manufacturers. The behavior of these valves has been investigated at room temperature and at 77 K. Precise heat load and mass leak measurements have been performed on a dedicated test facility at superfluid helium temperature. Results of cold and warm tests performed on as-delivered valves are presented.
The superconducting magnets of the Large Hadron Collider (LHC) will be protected by safety relief valves operating at 1.9 K in superfluid helium (HeII). A test facility was developed to precisely determine the heat load and the mass leakage of cryogenic valves with HeII at their inlet. The temperature of the valve inlet can be varied from 1.8 K to 2 K for pressures up to 3.5 bar. The valve outlet pipe temperature can be regulated between 5 K and 20 K. The heat flow is measured with high precision using a Kapitza-resistance heatmeter and is also crosschecked by a vaporization measurement. After calibration, a precision of 10 mW for heat flows up to 1.1 W has been achieved. The helium leak can be measured up to 15 mg/s with an accuracy of 0.2 mg/s. We present a detailed description of the test facility and the measurements showing its performances. ABSTRACTThe superconducting magnets of the Large Hadron Collider (LHC) will be protected by safety relief valves operating at 1.9 K in superfluid helium (HeII). A test facility was developed to precisely determine the heat load and the mass leakage of cryogenic valves with HeII at their inlet. The temperature of the valve inlet can be varied from 1.8 K to 2 K for pressures up to 3.5 bar. The valve outlet pipe temperature can be regulated between 5 K and 20 K. The heat flow is measured with high precision using a Kapitza-resistance heatmeter and is also crosschecked by a vaporization measurement. After calibration, a precision of 10 mW for heat flows up to 1.1 W has been achieved. The helium leak can be measured up to 15 mg/s with an accuracy of 0.2 mg/s. We present a detailed description of the test facility and the measurements showing its performances.
Laboratory-scale tests aimed at minimizing the thermal loads of the LHC magnet cryostat have gone along with the development of the various mechanical components. For final validation of the industrial design with respect to heat inleaks between large surfaces at different temperatures, a full-scale test cryostat has been constructed. The facility reproduces the same pattern of temperature levels as the LHC dipole cryostat, avoiding the heat inleaks from local components like supports and feedthroughs and carefully minimizing fringe effects due to the truncated geometry of the facility with respect to the LHC cryostats serial layout. Thermal loads to the actively cooled radiation screen, operated between 50 K and 65 K, are measured by enthalpy difference along its length. At 1.9 K, the loads are obtained from the temperature difference across a superfluid helium exchanger. On the beam screen, the electrical power needed to stabilize the temperature at 20 K yields a direct reading of the heat losses. Precise in-situ calibration is achieved by subcooling the thermal screen, thereby zeroing radiative heat loads. Minimizing fringe effects has been rewarded by a high precision measurement, yielding one of the more accurate quantifications to date of an industrial application of MLI. The influence of possible openings in the thermal screen is monitored both at the 1.9 K bath and with a radiation sensitive bolometer. ABSTRACTLaboratory-scale tests aimed at minimizing the thermal loads of the LHC magnet cryostat have gone along with the development of the various mechanical components. For final validation of the industrial design with respect to heat inleaks between large surfaces at different temperatures, a full-scale test cryostat has been constructed. The facility reproduces the same pattern of temperature levels as the LHC dipole cryostat, avoiding the heat inleaks from local components like supports and feedthroughs and carefully minimizing fringe effects due to the truncated geometry of the facility with respect to the LHC cryostats serial layout.Thermal loads to the actively cooled radiation screen, operated between 50 K and 65 K, are measured by enthalpy difference along its length. At 1.9 K, the loads are obtained from the temperature difference across a superfluid helium exchanger. On the beam screen [1], the electrical power needed to stabilize the temperature at 20 K yields a direct reading of the heat losses. Precise in-situ calibration is achieved by subcooling the thermal screen, thereby zeroing radiative heat loads. Minimizing fringe effects has been rewarded by a high precision measurement, yielding one of the more accurate quantifications to date of an industrial application of MLI. The influence of possible openings in the thermal screen is monitored both at the 1.9 K bath and with a radiation sensitive bolometer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.