Several heuristic methods have been suggested for improving the generalization capability in neural network learning, most of which are concerned with a single-objective (SO) learning tasks. In this work, we discuss generalization improvement in multi-objective learning (MO). As a case study, we investigate the generation of neural network classifiers based on the receiver operating characteristics (ROC) analysis using an evolutionary multi-objective optimization algorithm. We show on a few benchmark problems that for MO learning such as the ROC based classification, the generalization ability can be more efficiently improved within a multi-objective framework than within a single-objective one.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.