Chlamydia trachomatis is an obligate intracellular bacterial pathogen that infects hundreds of millions of individuals globally, causing blinding trachoma and sexually transmitted disease. More effective chlamydial control measures are needed, but progress toward this end has been severely hampered by the lack of a tenable chlamydial genetic system. Here, we describe a reversegenetic approach to create isogenic C. trachomatis mutants. C. trachomatis was subjected to low-level ethyl methanesulfonate mutagenesis to generate chlamydiae that contained less then one mutation per genome. Mutagenized organisms were expanded in small subpopulations that were screened for mutations by digesting denatured and reannealed PCR amplicons of the target gene with the mismatch specific endonuclease CEL I. Subpopulations with mutations were then sequenced for the target region and plaque-cloned if the desired mutation was detected. We demonstrate the utility of this approach by isolating a tryptophan synthase gene (trpB) null mutant that was otherwise isogenic to its parental clone as shown by de novo genome sequencing. The mutant was incapable of avoiding the anti-microbial effect of IFN-γ-induced tryptophan starvation. The ability to genetically manipulate chlamydiae is a major advancement that will enhance our understanding of chlamydial pathogenesis and accelerate the development of new anti-chlamydial therapeutic control measures. Additionally, this strategy could be applied to other medically important bacterial pathogens with no or difficult genetic systems.genetics | mutation screen
In cynomolgus macaques, ocular infection with a live trachoma strain lacking the conserved 7.5-kb plasmid induced no ocular pathology but facilitated solid or partial protection from subsequent infection with a virulent strain of trachoma.
Chlamydia trachomatis is a globally important obligate intracellular bacterial pathogen that is a leading cause of sexually transmitted disease and blinding trachoma. Effective control of these diseases will likely require a preventative vaccine. C. trachomatis polymorphic membrane protein D (PmpD) is an attractive vaccine candidate as it is conserved among C. trachomatis strains and is a target of broadly cross-reactive neutralizing antibodies. We show here that immunoaffinity-purified native PmpD exists as an oligomer with a distinct 23-nm flower-like structure. Two-dimensional blue native-sodium dodecyl sulfate-polyacrylamide gel electrophoresis analyses showed that the oligomers were composed of full-length PmpD (p155) and two proteolytically processed fragments, the p73 passenger domain (PD) and the p82 translocator domain. We also show that PmpD undergoes an infection-dependent proteolytic processing step late in the growth cycle that yields a soluble extended PD (p111) that was processed into a p73 PD and a novel p30 fragment. Interestingly, soluble PmpD peptides possess putative eukaryote-interacting functional motifs, implying potential secondary functions within or distal to infected cells. Collectively, our findings show that PmpD exists as two distinct forms, a surface-associated oligomer exhibiting a higher-order flower-like structure and a soluble form restricted to infected cells. We hypothesize that PmpD is a multifunctional virulence factor important in chlamydial pathogenesis and could represent novel vaccine or drug targets for the control of human chlamydial infections.Chlamydia trachomatis is a mucosotropic obligate intracellular gram-negative pathogen that is a leading cause of sexually transmitted and ocular infections. Infection can result in serious sequelae such as infertility and blindness (54, 56) and an increased risk of human immunodeficiency virus infection and transmission (38). The pathophysiology of chlamydial infection is associated with the pathogen's propensities to cause persistent infection and to suppress host immunity (3). A vaccine is needed to control chlamydial diseases; however, progress toward this goal will not be forthcoming until more is known about the virulence factors that mediate persistence and immune evasion.Chlamydiae are characterized by a unique biphasic developmental cycle that modulates between an extracellular, metabolically inactive, infectious elementary body (EB) and an intracellular, metabolically active, noninfectious reticulate body (RB) (34). Their obligate intracellular niche and the lack of a tractable genetic system present unique challenges in the study of chlamydial biology and pathogenesis. To overcome these hurdles, chlamydial genomes from a diverse spectrum of hostspecific strains have been sequenced. Comparative genomics have shown considerable homology among various chlamydial species and have provided important insights into shared and species-specific virulence factors (7,24,41,42,46,49).The type V or autotransporter (AT) secretion p...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.