Dendritic cells (DCs) are major immune components, and depending on how these cells are modulated, the protective host immune response changes drastically. Trypanosoma cruzi is a parasite with high genetic variability and modulates DCs by interfering with their capacity for antigen recognition, migration, and maturation. Despite recent efforts, the association between DCs and T. cruzi I (TcI) and TcII populations is unknown. Herein, it was demonstrated that AQ1.7 and MUTUM TcI strains present low rates of invasion of bone marrow-derived DCs, whereas the 1849 and 2369 TcII strains present higher rates. Whereas the four strains similarly induced the expression of PD-L1, the production and expression of IL-10 and TLR-2, respectively, in DCs were differentially increased. The production of TNF-α, IL-12, IL-6, and CCL2 and the expression of CD40, CD80, MHC-II, CCR5, and CCR7 changed depending on the strain. The 2369 strain yielded the most remarkable results because greater invasion correlated with an increase in the levels of anti-inflammatory molecules IL-10 and PD-L1 but not with a change in the levels of TNF-α, MHC-II, or CD40 molecules. These results suggest that T. cruzi strains belonging to different populations have evolved specific evasion strategies that subvert DCs and consequently the host response.
Introduction: For a long time, the importance of Chagas disease in Mexico, where many regarded it as an exotic malady, was questioned. Considering the great genetic diversity among isolates of Trypanosoma cruzi, the importance of this biological characterization, and the paucity of information on the clinical and biological aspects of Chagas disease in Mexico, this study aimed to identify the molecular and biological characterization of Trypanosoma cruzi isolates from different endemic areas of this country, especially of the State of Jalisco. Methods: Eight Mexican Trypanosoma cruzi strains were biologically and genetically characterized (PCR specific for Trypanosoma cruzi, multiplex-PCR, amplification of space no transcript of the genes of the mini-exon, amplification of polymorphic regions of the mini-exon, classification by amplification of intergenic regions of the spliced leader genes, RAPD -(random amplified polymorphic DNA). Results: Two profiles of parasitaemia were observed, patent (peak parasitaemia of 4.6×10 6 to 10 7 parasites/mL) and subpatent. In addition, all isolates were able to infect 100% of the animals. The isolates mainly displayed tropism for striated (cardiac and skeletal) muscle. PCR amplification of the mini-exon gene classified the eight strains as TcI. The RAPD technique revealed intraspecies variation among isolates, distinguishing strains isolated from humans and triatomines and according to geographic origin. Conclusions: The Mexican T. cruzi strains are myotrophic and belong to group TcI. Keywords: Trypanosoma cruzi. Mexico. Biological characterization. Genetic characterization. RESUMOIntrodução: Durante muito tempo, foi questionada a importância da doença de Chagas no México onde muitos a consideravam um padecimento exótico. Considerando a grande diversidade genética existente, entre os isolados de Trypanosoma cruzi, a importância da caracterização biológica desses e o escasso número de informações sobre os aspectos clínicos e biológicos da doença de Chagas no México, o objetivo deste trabalho foi realizar a caracterização biológica e molecular de isolados de Trypanosoma cruzi originários de diferentes áreas endêmicas deste país, principalmente do Estado de Jalisco. Métodos: Oito cepas mexicanas de Trypanosoma cruzi foram caracterizadas biologicamente e geneticamente (PCR específica para Trypanosoma cruzi, PCR-multiplex, amplificação do espaço não transcrito dos genes do mini-exon, amplificação das regiões polimórficas do gene do mini-exon, classificação pela amplificação de regiões intergênicas dos genes do spliced leader, RAPD -random amplified polymorphic DNA). Resultados: Foram observados dois tipos de parasitemia: patente com picos máximos de parasitemia entre 4,6x10 6 e 10 7 parasitas/mL e subpatente. Além disso, todos os isolados foram capazes de infectar 100% dos animais. Observou-se tropismo predominante pelo músculo estriado (cardíaco e esquelético). As técnicas de PCR do gene do mini-éxon classificaram as oito cepas como TcI e a técnica de RAPD mostrou variaçã...
Leishmaniasis is a complex of zoonotic diseases caused by parasites of the genus Leishmania, which can develop in domestic as well as wild animals and humans throughout the world. Currently, this disease is spreading in rural and urban areas of non-endemic regions in Brazil. Recently, bats have gained epidemiological significance in leishmaniasis due to its close relationship with human settlements. In this study, we investigated the presence of Leishmania spp. DNA in blood samples from 448 bats belonging to four families representing 20 species that were captured in the Triangulo Mineiro and Alto Paranaiba areas of Minas Gerais State (non-endemic areas for leishmaniasis), Brazil. Leishmania spp. DNA was detected in 8·0% of the blood samples, 41·6% of which were Leishmania infantum, 38·9% Leishmania amazonensis and 19·4% Leishmania braziliensis. No positive correlation was found between Leishmania spp. and bat food source. The species with more infection rates were the insectivorous bats Eumops perotis; 22·2% (4/18) of which tested positive for Leishmania DNA. The presence of Leishmania in the bat blood samples, as observed in this study, represents epidemiological importance due to the absence of Leishmaniasis cases in the region.
Several bat species can be infected by trypanosomes, but there is not much information about which of these parasites infect bats from Triângulo Mineiro and Alto Paranaíba, Minas Gerais state, Brazil, a formerly endemic region for Trypanosoma cruzi, the causative agent of Chagas disease. The aim of this study was to describe, characterize, and identify the presence of trypanosomes in bats. The captured bats (448) belong to four families and to 19 different species. Of those, 37 bats were found to be positive for trypanosomes by microhematocrit, (infection rate 8.3%) and 27 were positive after hemoculture analysis. Initially, the isolates were identified by PCR (18S rDNA, 24Sα rDNA, spliced leader, COII RFLP-PCR) using primers originally designed for T. cruzi. PCRs (18S rDNA, 24Sα rDNA) showed compatible bands for TcI, whereas COII RFLP-PCR showed a similar pattern associated to TcII. However, there was no DNA amplification using spliced leader as a target, revealing a discrepancy between the results. Phylogenetic analysis of Cathepsin L-like and 18S rDNA sequences proved that 15 of the isolates corresponded to Trypanosoma cruzi marinkellei and one to Trypanosoma dionisii. These results revealed that the diversity of trypanosome species in a region considered endemic for Chagas disease is greater than previous descriptions. All this can confirm the necessity of using DNA sequencing approaches in order to determinate trypanosomes species isolated from bats.
The major problem with Chagas disease is evolution of the chronic indeterminate form to a progressive cardiac disease. Treatment diminishes parasitemia but not clinical progression, and the immunological features involved are unclear. Here, we studied the clinical course and the immune response in patients with chronic-phase Chagas disease at 48 months after benznidazole treatment. Progression to the cardiac form of Chagas disease or its aggravation was associated with higher in vitro antigen-specific production of interferon gamma (IFN-γ) in patients with cardiac Chagas disease than in patients with the indeterminate form. Predominance of IFN-γ production over interleukin-10 (IL-10) production in antigen-specific cultures was associated with cardiac involvement. Significantly higher numbers of antigen-specific T helper 1 cells (T-Bet+ IFN-γ+) and a significantly higher IFN-γ+/IL-10+ ratio were observed in patients with cardiac Chagas disease than in patients with the indeterminate form. Cardiac damage was associated with higher numbers of T helper cells than cytotoxic T lymphocytes producing IFN-γ. Patients with cardiac Chagas disease had predominant CD25− and CD25low T regulatory (Treg) subpopulations, whereas patients with the indeterminate form manifested a higher relative mean percentage of CD25high Treg subpopulations. These findings suggest that at 48 months after benznidazole treatment, the disease can worsen or progress to the cardiac form. The progression may be related to increased IFN-γ production (mostly from CD4+ T cells) relative to IL-10 production and increased Treg percentages. Patients with the indeterminate form of Chagas disease show a more balanced ratio of proinflammatory and anti-inflammatory cytokines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.