The BMP/TGFβ-Smad, Notch and VEGF signaling guides formation of endothelial tip and stalk cells. However, the crosstalk of bone morphogenetic proteins (BMPs) and vascular endothelial growth factor receptor 2 (VEGFR2) signaling has remained largely unknown. We demonstrate that BMP family members regulate VEGFR2 and Notch signaling, and act via TAZ-Hippo signaling pathway. BMPs were found to be regulated after VEGF gene transfer in C57/Bl6 mice and in a porcine myocardial ischemia model. BMPs 2/4/6 were identified as endothelium-specific targets of VEGF. BMP2 modulated VEGF-mediated endothelial sprouting via Delta like Canonical Notch Ligand 4 (DLL4). BMP6 modulated VEGF signaling by regulating VEGFR2 expression and acted via Hippo signaling effector TAZ, known to regulate cell survival/proliferation, and to be dysregulated in cancer. In a matrigel plug assay in nude mice BMP6 was further demonstrated to induce angiogenesis. BMP6 is the first member of BMP family found to directly regulate both Hippo signaling and neovessel formation. It may thus serve as a target in pro/anti-angiogenic therapies.
Selective elimination of macrophages by photodynamic therapy (PDT) is a new and promising therapeutic modality for the reduction of atherosclerotic plaques. m-Tetra(hydroxyphenyl)chlorin (mTHPC, or Temoporfin) may be suitable as photosensitizer for this application, as it is currently used in the clinic for cancer PDT. In the present study, mTHPC was encapsulated in polymeric micelles based on benzyl-poly(ε-caprolactone)-b-methoxy poly(ethylene glycol) (Ben-PCL-mPEG) using a film hydration method, with loading capacity of 17%. Because of higher lipase activity in RAW264.7 macrophages than in C166 endothelial cells, the former cells degraded the polymers faster, resulting in faster photosensitizer release and higher in vitro photocytotoxicity of mTHPC-loaded micelles in those macrophages. However, we observed release of mTHPC from the micelles in 30min in blood plasma in vitro which explains the observed similar in vivo pharmacokinetics of the mTHPC micellar formulation and free mTHPC. Therefore, we could not translate the beneficial macrophage selectivity from in vitro to in vivo. Nevertheless, we observed accumulation of mTHPC in atherosclerotic lesions of mice aorta's which is probably the result of binding to lipoproteins upon release from the micelles. Therefore, future experiments will be dedicated to increase the stability and thus allow accumulation of intact mTHPC-loaded Ben-PCL-mPEG micelles to macrophages of atherosclerotic lesions.
This article describes a straightforward supramolecular strategy to encapsulate amphiphilic silicon phthalocyanines in polymeric micelles. A member of this new series of third-generation photosensitizers presents promising PDT activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.