Myrciaria species are widely studied to identify their chemical composition and evaluate their biological activity. Since evidence supporting the potential antioxidant and antiproliferative activity of Myrciaria tenella is lacking, the aim of this work was to evaluate these activities in six different leaf extracts: hexane (CHE), chloroform (CCE), ethanolic (CEE), methanolic (CME), aqueous final (CFAE), and only aqueous (CAE). The presence of phenolic compounds, tannin, saponin, and ursolic acid was determined by thin layer chromatography (TLC). CEE, CME, and CFAE showed in vitro antioxidant activity at the initiation, propagation, and termination stages of oxidative damage. Moreover, no toxicity was observed in the 3T3 non-cancerous cell line. On the other hand, all extracts promoted cell death in the tumor cell lines human cervical adenocarcinoma cell line (HeLa) and human stomach gastric adenocarcinoma cell line (AGS). Based on these results, the effect of CEE on the AGS cell line was analyzed using flow cytometry, and necrosis and late apoptosis were observed. Finally, the Caenorhabditis elegans model showed that CEE was able to reduce the basal reactive oxygen species (ROS) level. Ultra-performance liquid chromatography (UPLC) analysis showed rutin as the major compound in CEE. Therefore, Myrciaria tenella fresh leaves may be potential sources of molecules possessing antioxidant and antiproliferative activities.
Genipa americana is a medicinal plant popularly known as “jenipapo”, which occurs in Brazil and belongs to the Rubiaceae family. It is a species widely distributed in the tropical Central and South America, especially in the Cerrado biome. Their leaves and fruits are used as food and popularly in folk medicine to treat anemias, as an antidiarrheal, and anti-syphilitic. Iridoids are the main secondary metabolites described from G. americana, but few studies have been conducted with their leaves. In this study, the aim was to chemical approach for identify the main compounds present at the extract of G. americana leaves. The powdered leaves were extracted by maceration with EtOH: water (70:30, v/v), following liquid-liquid partition with petroleum ether, chloroform, ethyl acetate and n-butanol. A total of 13 compounds were identified. In addition three flavonoids were isolated from the ethyl acetate fraction: quercetin-3-O-robinoside (GAF 1), kaempferol-3-O-robinoside (GAF 2) and isorhamnetin-3-O-robinoside (GAF 3) and, from n-butanol fraction more two flavonoids were isolated, kaempferol-3-O-robinoside-7-O-rhamnoside (robinin) (GAF 4) and isorhamnetin-3-O-robinoside-7-rhamnoside (GAF 5). Chemical structures of these five flavonoids were elucidated using spectroscopic methods (MS, 1H and 13C-NMR 1D and 2D). These flavonoids glycosides were described for the first time in G. americana.
The genus Coccoloba is widely used in traditional folk medicine, but few scientific data exist for this genus. The goal of this study was to characterise the chemical composition and antioxidant activities of C. alnifolia leaf extracts using in vitro and in vivo assays. Six extracts were obtained: hexane (HE), chloroform (CE), ethanol (EE), methanol (ME), water end extract (WEE), and water extract (WE). Thin-layer chromatography (TLC) analysis showed the presence of phenols, saponins, terpenes, and flavonoids. In vitro assays demonstrated substantial antioxidant potential, especially for polar extracts (EE, ME, WEE, and WE). Moreover, no toxic effects were observed on mammalian cell lines for most of the extracts at the concentrations evaluated. The nematode Caenorhabditis elegans was also used as an in vivo model for testing antioxidant potential. The EE and WE were chosen, based on previously obtained results. It was observed that neither the EE nor the WE had any toxic effect on C. elegans development. Additionally, the antioxidant potential was evaluated using tert-butyl hydroperoxide as a stressor agent. The EE increased the life span of C. elegans by 28% compared to that of the control, and the WE increased the range to 39.2-41.3%. High-performance liquid chromatography (HPLC-DAD) showed the presence of gallic acid, p-coumaric acid, and vitexin in the WE. Therefore, in vitro and in vivo data demonstrated the antioxidant potential of C. alnifolia extracts and their possible biotechnological applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.