The current COVID-19 pandemic has tested the resolve of the global community with more than 35 million infections worldwide and numbers increasing with no cure or vaccine available to date. Nanomedicines have an advantage of providing enhanced permeability and retention and have been extensively studied as targeted drug delivery strategies for the treatment of different disease. The role of monocytes, erythrocytes, thrombocytes, and macrophages in diseases, including infectious and inflammatory diseases, cancer, and atherosclerosis, are better understood and have resulted in improved strategies for targeting and in some instances mimicking these cell types to improve therapeutic outcomes. Consequently, these primary cell types can be exploited for the purposes of serving as a “Trojan horse” for targeted delivery to identified organs and sites of inflammation. State of the art and potential utilization of nanocarriers such as nanospheres/nanocapsules, nanocrystals, liposomes, solid lipid nanoparticles/nano-structured lipid carriers, dendrimers, and nanosponges for biomimicry and/or targeted delivery of bioactives to cells are reported herein and their potential use in the treatment of COVID-19 infections discussed. Physicochemical properties, viz., hydrophilicity, particle shape, surface charge, composition, concentration, the use of different target-specific ligands on the surface of carriers, and the impact on carrier efficacy and specificity are also discussed.
There is a dearth of natural remedies available for the treatment of an increasing number of diseases facing mankind. Natural products may provide an opportunity to produce formulations and therapeutic solutions to address this shortage. Curcumin (CUR), diferuloylmethane; I,7-bis-(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione is the major pigment in turmeric powder which has been reported to exhibit a number of health benefits including, antibacterial, antiviral, anti-cancer, anti-inflammatory and anti-oxidant properties. In this review, the authors attempt to highlight the biological and pharmacological properties of CUR in addition to emphasizing aspects relating to the biosynthesis, encapsulation and therapeutic effects of the compound. The information contained in this review was generated by considering published information in which evidence of enhanced biological and pharmacological properties of nano-encapsulated CUR was reported. CUR has contributed to a significant improvement in melanoma, breast, lung, gastro-intestinal, and genito-urinary cancer therapy. We highlight the impact of nano-encapsulated CUR for efficient inhibition of cell proliferation, even at low concentrations compared to the free CUR when considering anti-proliferation. Furthermore nano-encapsulated CUR exhibited bioactive properties, exerted cytotoxic and anti-oxidant effects by acting on endogenous and cholinergic anti-oxidant systems. CUR was reported to block Hepatitis C virus (HCV) entry into hepatic cells, inhibit MRSA proliferation, enhance wound healing and reduce bacterial load. Nano-encapsulated CUR has also shown bioactive properties when acting on antioxidant systems (endogenous and cholinergic). Future research is necessary and must focus on investigation of encapsulated CUR nano-particles in different models of human pathology.
Objectives Vesicular drug delivery has become a useful approach for therapeutic administration of pharmaceutical compounds. Lipid vesicles have found application in membrane biology, immunology, genetic engineering and theragnostics. This review summarizes topical delivery, specifically dermal/transdermal, ocular and transungual, via these vesicles, including future formulation perspectives. Key findings Liposomes and their subsequent derivatives, viz. niosomes, transferosomes, pharmacososmes and ethosomes, form a significant part of vesicular systems that have been successfully utilized in treating an array of topical disorders. These vesicles are thought to be a safe and effective mode of improving the delivery of lipophilic and hydrophilic drugs. Summary Several drug molecules are available for topical disorders. However, physicochemical properties and undesirable toxicity have limited their efficacy. Vesicular delivery systems have the potential to overcome these shortcomings due to properties such as high biocompatibility, simplicity of surface modification and suitability as controlled delivery vehicles. However, incorporating these systems into environmentally responsive dispersants such as hydrogels, ionic liquids and deep eutectic solvents may further enhance therapeutic prowess of these delivery systems. Consequently, improved vesicular drug delivery can be achieved by considering combining some of these formulation approaches.
Five new phenolic siderophores 1–5 were isolated from the organic extract of a culture broth in a modified SGG medium of Pseudomonas sp. UIAU-6B, obtained from sediments collected from the Oyun river in North Central Nigeria. The structure of the new compounds, pseudomonin A–C (1–3) and pseudomobactin A and B (4 and 5) isolated alongside two known compounds, pseudomonine (6) and salicylic acid (7), were elucidated based on high-resolution mass spectrometry, 1D and 2D NMR analyses. The absolute configuration of the threonine residue in compounds 1–5 was determined by Marfey analysis. The antimicrobial evaluation of compound 4 exhibited the most potent activity against vancomycin-sensitive Enterococcus faecium VS144754, followed by 3 and 5, with MIC values ranging from 8 to 32 µg/mL. Compounds 2 and 3 exhibited moderate activity against Mycobacterium tuberculosis H37Rv, with MIC values of 7.8 and 15.6 µg/mL, respectively. Plausible biosynthetic hypotheses toward the new compounds 1–5 were proposed.
Nanocrystalline materials (NCM, i.e., crystalline nanoparticles) have become an important class of materials with great potential for applications ranging from drug delivery and electronics to optics. Drug nanocrystals (NC) and nano co-crystals (NCC) are examples of NCM with fascinating physicochemical properties and have attracted significant attention in drug delivery. NCM are categorized by advantageous properties, such as high drug-loading efficiency, good long-term physical stability, steady and predictable drug release, and long systemic circulation time. These properties make them excellent formulations for the efficient delivery of a variety of active pharmaceutical ingredients (API). In this review, we summarize the recent advances in drug NCM-based therapy options. Currently, there are three main methods to synthesize drug NCM, including top-down, bottom-up, and combination methods. The fundamental characterization methods of drug NCM are elaborated. Furthermore, the applications of these characterizations and their implications on the post-formulation performance of NCM are introduced.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.