The evidence for the existence of dark matter in the universe is reviewed. A general picture emerges, where both baryonic and non-baryonic dark matter is needed to explain current observations. In particular, a wealth of observational information points to the existence of a non-baryonic component, contributing between around 20 and 40 percent of the critical mass density needed to make the universe geometrically flat on large scales. In addition, an even larger contribution from vacuum energy (or cosmological constant) is indicated by recent observations. To the theoretically favoured particle candidates for non-baryonic dark matter belong axions, supersymmetric particles, and of less importance, massive neutrinos. The theoretical foundation and experimental situation for each of these is reviewed. Direct and indirect methods for detection of supersymmetric dark matter are described in some detail. Present experiments are just reaching the required sensitivity to discover or rule out some of these candidates, and major improvements are planned over the coming years.
The question of the nature of the dark matter in the Universe remains one of the most outstanding unsolved problems in basic science. One of the best motivated particle physics candidates is the lightest supersymmetric particle, assumed to be the lightest neutralino -a linear combination of the supersymmetric partners of the photon, the Z boson and neutral scalar Higgs particles. Here we describe DarkSUSY, a publicly-available advanced numerical package for neutralino dark matter calculations. In DarkSUSY one can compute the neutralino density in the Universe today using precision methods which include resonances, pair production thresholds and coannihilations. Masses and mixings of supersymmetric particles can be computed within DarkSUSY or with the help of external programs such as FeynHiggs, ISASUGRA and SUSPECT. Accelerator bounds can be checked to identify viable dark matter candidates. DarkSUSY also computes a large variety of astrophysical signals from neutralino dark matter, such as direct detection in low-background counting experiments and indirect detection through antiprotons, antideuterons, gamma-rays and positrons from the Galactic halo or high-energy neutrinos from the center of the Earth or of the Sun. Here we describe the physics behind the package. A detailed manual will be provided with the computer package.
Recent advances in N-body simulations of cold dark matter halos point to a substantial density enhancement near the center. This means that, e.g., the γ ray signals from neutralino dark matter annihilations would be significantly enhanced compared to old estimates based on an isothermal sphere model with large core radius.Another important development concerns new detectors, both spaceand ground-based, which will cover the window between 50 and 300 GeV where presently no cosmic γ-ray data are available.Thirdly, new calculations of the γ-ray line signal (a sharp spike of 10 −3 relative width) from neutralino annihilations have revealed a hitherto neglected contribution which, for heavy higgsino-like neutralinos, gives an annihilation rate an order of magnitude larger than previously predicted.We make a detailed phenomenological study of the possible detection rates given these three pieces of new information. We show that the proposed upgrade of the Whipple telescope will make it sensitive to a region of parameter space, with substantial improvements possible * lbe@physto.se † piero@physto.se ‡ buckley@wuphys.wustl.edu with the planned new generation of Air Cherenkov Telescope Arrays. We also comment on the potential of the GLAST satellite detector.An evaluation of the continuum γ-rays produced in neutralino annihilations into the main modes is also done. It is shown that a combination of high-rate models and very peaked halo models are already severely constrained by existing data.
The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that:• a full bibliographic reference is made to the original source • a link is made to the metadata record in DRO • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders.Please consult the full DRO policy for further details. We investigate the prospects of detecting weakly interacting massive particle ͑WIMP͒ dark matter by measuring the contribution to the extragalactic gamma-ray radiation induced, in any dark matter halo and at all redshifts, by WIMP pair annihilations into high-energy photons. We perform a detailed analysis of the very distinctive spectral features of this signal, recently proposed in a short letter by three of the authors: The gamma-ray flux which arises from the decay of 0 mesons produced in the fragmentation of annihilation final states shows a severe cutoff close to the value of the WIMP mass. An even more spectacular signature appears for the monochromatic gamma-ray components, generated by WIMP annihilations into two-body final states containing a photon: the combined effect of cosmological redshift and absorption along the line of sight produces sharp bumps, peaked at the rest frame energy of the lines and asymmetrically smeared to lower energies. The level of the flux depends both on the particle physics scenario for WIMP dark matter ͑we consider, as our template case, the lightest supersymmetric particle in a few supersymmetry breaking schemes͒, and on the question of how dark matter clusters. Uncertainties introduced by the latter are thoroughly discussed implementing a realistic model inspired by results of the state-of-the-art N-body simulations and semianalytic modeling in the cold dark matter structure formation theory. We also address the question of the potential gamma-ray background originating from active galaxies, presenting a novel calculation and critically discussing the assumptions involved and the induced uncertainties. Furthermore, we apply a realistic model for the absorption of gamma-rays on the optical and near-IR intergalactic radiation field to derive predictions for both the signal and background. Comparing the two, we find that there are viable configurations, in the combined parameter space defined by the particle physics setup and the structure formation scenario, for which the WIMP induced extragalactic gamma-ray signal will be detectable in the new generation of gamma-ray telescopes such as GLAST.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.