Wood et al. have developed inducible chemical and optogenetic systems for triggering clathrin-mediated endocytosis using minimal clathrin-binding domains. Bypassing regulatory steps in vesicle creation will enable a better understanding of the factors required for vesicle initiation and processing, which the authors use to define how clathrin functionally interacts with its adaptor AP2.
Extraction of integral membrane proteins with poly(styrene-co-maleic acid) provides a promising alternative to detergent extraction. A major advantage of extraction using copolymers rather than detergent is the retention of the lipid bilayer around the proteins. Here we report the first functional investigation of the mammalian insulin receptor which was extracted from cell membranes using poly(styrene-co-maleic acid). We found that the copolymer efficiently extracted the insulin receptor from 3T3L1 fibroblast membranes. Surprisingly, activation of the insulin receptor and proximal downstream signalling was detected upon copolymer extraction even in the absence of insulin stimulation. Insulin receptor and IRS1 phosphorylations were above levels measured in the control extracts made with detergents. However, more distal signalling events in the insulin signalling cascade, such as the phosphorylation of Akt were not observed. Following copolymer extraction, in vitro addition of insulin had no further effect on insulin receptor or IRS1 phosphorylation. Therefore, under our experimental conditions, the insulin receptor is not functionally responsive to insulin. This study is the first to investigate receptor tyrosine kinases extracted from mammalian cells using a styrene-maleic acid copolymer and highlights the importance of thorough functional characterisation when using this method of protein extraction.
Clathrin-mediated endocytosis (CME) is the major route of receptor internalization at the plasma membrane. Analysis of constitutive CME is complicated by the fact that initiation of endocytic events is unpredictable. When and where a clathrin-coated pit will form and what cargo it will contain are difficult to foresee. Here we describe a series of genetically encoded reporters that allow the initiation of CME on demand. This is achieved by inducibly tethering a clathrin "hook" to a plasma membrane "anchor". Our design incorporates temporal and spatial control of initiation using chemical and optical tools, and the cargo is defined. Since this system bypasses multiple steps in vesicle creation, we term it "hot-wiring". In this paper, we use hot-wired endocytosis to define the functional interactions between clathrin and the β2 subunit of the AP2 complex. However, there are numerous applications for this new technology, which we hope will be broadly useful to the field.
Clathrin-mediated endocytosis (CME) occurs continuously at the plasma membrane of eukaryotic cells. However, when a vesicle forms and what cargo it contains are unpredictable. We recently developed a system to trigger CME on-demand. This means that we can control when endocytosis is triggered and the design means that the cargo that is internalized is predetermined. The method is called hot-wired CME because several steps and proteins are bypassed in our system. In this chapter, we describe in detail how to use the hot-wiring system to trigger endocytosis in human cell lines and how to image the vesicles that form using microscopy and finally, how to analyze those images.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.