Hybrid magnetic nanoparticles made up of an iron oxide, Fe 3 O 4 , core and a mesoporous SiO 2 shell with high magnetization and a large surface area were proposed as an efficient drug delivery platform. The core/shell structure was synthesized by two seed-mediated growth steps combining solvothermal and sol−gel approaches and using organic molecules as a porous scaffolding template. The system presents a mean particle diameter of 30( 5) nm (9 nm magnetic core diameter and 10 nm silica shell thickness) with superparamagnetic behavior, saturation magnetization of 32 emu/g, and a significant AC magnetic-field-induced heating response (SAR = 63 W/g Fed 3 Od 4 , measured at an amplitude of 400 Oe and a frequency of 307 kHz). Using ibuprofen as a model drug, the specific surface area (231 m 2 /g) of the porous structure exhibits a high molecule loading capacity (10 wt %), and controlled drug release efficiency (67%) can be achieved using the external AC magnetic field for short time periods (5 min), showing faster and higher drug desorption compared to that of similar stimulus-responsive iron oxide-based nanocarriers. In addition, it is demonstrated that the magnetic fieldinduced drug release shows higher efficiency compared to that of the sustained release at fixed temperatures (47 and 53% for 37 and 42 °C, respectively), considering that the maximum temperature reached during the exposure to the magnetic field is well below (31 °C). Therefore, it can be hypothesized that short periods of exposure to the oscillating field induce much greater heating within the nanoparticles than in the external solution.
Magnetic carbon nanocomposites (α-Fe/Fe3C@C) synthesized employing fructose and Fe3O4 magnetite nanoparticles as the carbon and iron precursors, respectively, are analyzed and applied for the removal of Cr (VI). Initial citric acid-coated magnetite nanoparticles, obtained through the co-precipitation method, were mixed with fructose (weight ratio 1:2) and thermally treated at different annealing temperatures (Tann = 400, 600, 800, and 1000 °C). The thermal decomposition of the carbon matrix and the Fe3O4 reduction was followed by thermogravimetry (TGA) and Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction, Raman spectroscopy, SQUID magnetometry, and N2 adsorption–desorption isotherms. A high annealing temperature (Tann = 800 °C) leads to optimum magnetic adsorbents (high magnetization enabling the magnetic separation of the adsorbent from the aqueous media and large specific surface area to enhance the pollutant adsorption process). Cr (VI) adsorption tests, performed under weak acid environments (pH = 6) and low pollutant concentrations (1 mg/L), confirm the Cr removal ability and reusability after consecutive adsorption cycles. Physical adsorption (pseudo-first-order kinetics model) and multilayer adsorption (Freundlich isotherm model) characterize the Cr (VI) absorption phenomena and support the enhanced adsorption capability of the synthesized nanostructures.
Magnetic Induction Heating (MIH) of magnetite nanoparticles is employed as a novel synthesis procedure of carbon based magnetic nanocomposites. Magnetic nanoparticles (Fe3O4) and fructose (1:2 weight ratio) were mechanically mixed and submitted to a RF magnetic field (305 kHz). The heat generated by the nanoparticles leads to the decomposition of the sugar and to the formation of an amorphous carbon matrix. Two sets of nanoparticles, with mean diameter sizes of 20 and 100 nm, are comparatively analysed. Structural (X-ray diffraction, Raman spectroscopy, Transmission Electron Microscopy (TEM)), electrical and magnetic (resistivity, SQUID magnetometry) characterizations confirm the nanoparticle carbon coating through the MIH procedure. The percentage of the carbonaceous fraction is suitably increased controlling the magnetic heating capacity of the magnetic nanoparticles. The procedure enables the synthesis of multifunctional nanocomposites with optimized properties to be applied in different technological fields. Particularly, Cr (VI) removal from aqueous media is presented employing the carbon nanocomposite with 20 nm Fe3O4 nanoparticles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.