Two results by Schützenberger (1965) and by Mc-Naughton and Papert (1971) lead to a precise description of the expressive power of first order logic on words interpreted as ordered colored structures. In this paper, we study the expressive power of existential formulas and of Boolean combinations of existential formulas in a logic enriched by modular numerical predicates. We first give a combinatorial description of the corresponding regular languages, and then give an algebraic characterization in terms of their syntactic morphisms. It follows that one can effectively decide whether a given regular language is captured by one of these two fragments of first order logic. The proofs rely on nontrivial techniques of semigroup theory: stamps, derived categories and wreath products.
It is studied how taking the inverse image by a sliding block code affects the syntactic semigroup of a sofic subshift. Two independent approaches are used: ζ-semigroups as recognition structures for sofic subshifts, and relatively free profinite semigroups. A new algebraic invariant is obtained for weak equivalence of sofic subshifts, by determining which classes of sofic subshifts naturally defined by pseudovarieties of finite semigroups are closed under weak equivalence. Among such classes are the classes of almost finite type subshifts and aperiodic subshifts. The algebraic invariant is compared with other robust conjugacy invariants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.