Asparagus Decline Syndrome (ADS) is one of the main phytosanitary problems of asparagus crop worldwide. Diseased plants and soil samples from 41 fields from three main production areas of Spain were surveyed. Eight Fusarium species belonging to seven species complexes were identified in soils: F. oxysporum, F. proliferatum, F. redolens, F. solanisensu stricto, F. equiseti, F. culmorum, F. compactum and F. acuminatum. Fusarium oxysporum was the most prevalent species. Statistical correlation (R2 = 88%) was established between F. oxysporum inoculum density and the average temperature of the warmest month. A relationship was also established between three crop factors (average temperature, crop age and F. oxysporum inoculum density) and field disease indices. Significant differences were observed between the distribution of F. oxysporum propagules in white and green asparagus fields. Thirteen Fusarium species belonging to seven species complexes were identified from roots of diseased plants, being F. oxysporum the most prevalent. F. proliferatum, F. oxysporum and F. redolens showed pathogenicity to asparagus and were the main species associated to ADS. Fusarium oxysporum was the species with the highest genetic diversity displaying 14 sequence-based haplotypes with no geographic differentiation. This work contributes to understanding the Fusarium complex associated to ADS for developing accurate integrated disease management strategies.
Seeds can harbor a wide range of microorganisms, especially fungi, which can cause different sanitary problems. Seed quality and seed longevity may be drastically reduced by fungi that invade seeds before or after harvest. Seed movement can be a pathway for the spread of diseases into new areas. Some seed-associated fungi can also produce mycotoxins that may cause serious negative effects on humans, animals and the seeds themselves. Seed storage is the most efficient and widely used method for conserving plant genetic resources. The seed storage conditions used in gene banks, low temperature and low seed moisture content, increase seed longevity and are usually favorable for the survival of seed-borne mycoflora. Early detection and identification of seed fungi are essential activities to conserve high-quality seeds and to prevent pathogen dissemination. This article provides an overview of the characteristics and detection methods of seed-borne fungi, with a special focus on their potential effects on gene bank seed conservation. The review includes the following aspects: types of seed-borne fungi, paths of infection and transmission, seed health methods, fungi longevity, risk of pathogen dissemination, the effect of fungi on seed longevity and procedures to reduce the harmful effects of fungi in gene banks.
Fusarium dry rot (FDR) is a postharvest disease of garlic crops causing yield losses worldwide. Fusarium proliferatum has been identified as the main species causing the disease. Symptoms begin as small brown lesions with a dehydrated appearance that can progress to cover the entire clove during the storage period. Symptoms on growing plants cause brown lesions on the basal plates and roots, and sometimes damping-off is observed. F. proliferatum is a polyphagous pathogen with a wide range of hosts. This pathogen colonizes garlic roots, remaining as a latent pathogen, and develops rot during storage. The pathogen can overwinter in the soil, infested crop residues, and weeds. The fungus can also persist on garlic cloves, acting as primary inoculum in the field and contributing to the long-distance spread. Using healthy plant material, rotating crops, burying crop residues, avoiding bulb injury during harvest and subsequent handling, and providing appropriate postharvest environmental conditions are crucial factors that greatly influence the disease severity. Choosing a suitable non-host crop to achieve truly effective rotation is sometimes difficult. Chemical control in the form of seed treatments or field spraying of the crop has a limited effect on controlling FDR. Field applications of biological control agents have shown some efficacy, but conditions to optimize their activity must be determined. Moreover, different soil management strategies to reduce soil inoculum must be also studied.
In recent years, different postharvest alterations have been detected in garlic. In many cases, the symptoms are not well defined, or the etiology is unknown, which further complicates the selection of bulbs during postharvest handling. To characterize the different symptoms of bulb rot caused by fungi, garlic bulb samples were collected from six Spanish provinces in two consecutive years. Eight different fungal species were identified. The most prevalent postharvest disease was Fusarium dry rot (56.1%), which was associated with six Fusarium species. Fusarium proliferatum was detected in more than 85% of symptomatic cloves, followed by F. oxysporum and F. solani. Pathogenicity tests did not show a significant correlation between virulence and mycotoxin production (fumonisins, beauvericin, and moniliformin) or the mycelial growth rate. Penicillium allii was detected in 12.2% of the samples; it was greatly influenced by the harvest season and garlic cultivar, and three different morphotypes were identified. Stemphylium vesicarium and Embellisia allii were pathogenic to wounded cloves. Some of the isolated fungal species produce highly toxic mycotoxins, which may have a negative impact on human health. This work is the first to determine the quantitative importance, pathogenicity, and virulence of the causative agents of postharvest garlic rot in Spain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.