Although the use and promotion of renewable energies have increased in recent years, it is evident that the use of fossil fuels such as oil and gas continues to be of great importance. Likewise, pipelines are widely recognized as the most reliable and profitable means of transportation for liquid and gaseous hydrocarbons. Nevertheless, due to the nature of hydrocarbons, oil and gas pipelines are continually exposed to deterioration by corrosion and mechanical damage. In this context, this research focuses on the improvement of the surface properties of API 5L grade B pipeline steel by applying a surface hardening process. Samples of an API 5L grade B pipeline steel were exposed to boriding to form a layer of high hardness (from 2.60 GPa for the non-treated material to 14.12 GPa for the samples exposed to 1000 °C for 6 h). The treatment time was set at 2, 4, and 6 h, at temperatures of 850, 900, 950, and 1000 °C. Due to the saw-tooth morphology of the layers and the random nature of the process, it was possible to fit their thicknesses to a probability density function in all the experimental conditions. The crystalline structure of the layers was analyzed by X-ray diffraction and the morphology was observed using SEM and optical microscopy. The layer’s thickness ranged between 26.6 µm to 213.9 µm showing a close relationship with the experimental parameters of time and temperature. Finally, it is studied the changes undergone in the pipeline steel after the thermochemical process, observing an increase in the grain size as a function of the temperature.
The mechanical performance of API 5L grade B steel, after undergoing a thermochemical boriding process, was assessed. We quantified the boride layer microhardness over cross-section specimens, with the aim of characterizing the mechanical resistance under different conditions. The pipeline steel was analyzed because of the changes in yield strength, ultimate tensile strength, and ductility after treatment with boron. These oil and gas pipelines must work in aggressive environments, so borided pipeline steel specimens were tested to assess their erosion–corrosion resistance. Another important characteristic to evaluate was the wearing resistance, because the pipelines tend to suffer scratches when they are under construction. We also present a discussion of the results of the total research work (Part I and Part II), including the results of the boride layer characterization as well as the changes in the substrate, with the goal of selecting the best conditions under which to treat pipeline steel. More extreme treatment conditions can help to form more stable and resistant boride layers, but they can considerably modify some mechanical characteristics of the API 5L grade B steel. For this reason, the boriding treatment conditions must be chosen in a synergistic way.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.