BackgroundThe accumulation of MWCNTs in the lung environment leads to inflammation and the development of disease similar to pulmonary fibrosis in rodents. Adverse Outcome Pathways (AOPs) are a framework for defining and organizing the key events that comprise the biological changes leading to undesirable events. A putative AOP has been developed describing MWCNT-induced pulmonary fibrosis; inflammation and the subsequent healing response induced by inflammatory mechanisms have been implicated in disease progression.The objective of the present study was to address a key data gap in this AOP: empirical data supporting the essentiality of pulmonary inflammation as a key event prior to fibrosis. Specifically, Interleukin-1 Receptor1 (IL-1R1) and Signal Transducer and Activator of Transcription 6 (STAT6) knock-out (KO) mice were employed to target inflammation and the subsequent healing response using MWCNTs as a model pro-fibrotic stressor to determine whether this altered the development of fibrosis.ResultsWild type (WT) C57BL/6, IL-1R1 (KO) or STAT6 KO mice were exposed to a high dose of Mitsui-7 MWCNT by intratracheal administration. Inflammation was assessed 24 h and 28 days post MWCNT administration, and fibrotic lesion development was assessed 28 days post MWCNT administration. MWCNT-induced acute inflammation was suppressed in IL-1R1 KO mice at the 24 h time point relative to WT mice, but this suppression was not observed 28 days post exposure, and IL-1R1 KO did not alter fibrotic disease development. In contrast, STAT6 KO mice exhibited suppressed acute inflammation and attenuated fibrotic disease in response to MWCNT administration compared to STAT6 WT mice. Whole genome analysis of all post-exposure time points identified a subset of differentially expressed genes associated with fibrosis in both KO mice compared to WT mice.ConclusionThe findings support the essentiality of STAT6-mediated signaling in the development of MWCNT-induced fibrotic disease. The IL-1R1 KO results also highlight the nature of the inflammatory response associated with MWCNT exposure, and indicate a system with multiple redundancies. These data add to the evidence supporting an existing AOP, and will be useful in designing screening strategies that could be used by regulatory agencies to distinguish between MWCNTs of varying toxicity.Electronic supplementary materialThe online version of this article (10.1186/s12989-017-0218-0) contains supplementary material, which is available to authorized users.
The mammalian ISWI (Imitation Switch) genes SMARCA1 and SMARCA5 encode the ATP-dependent chromatin remodeling proteins SNF2L and SNF2H. The ISWI proteins interact with BAZ (bromodomain adjacent to PHD zinc finger) domain containing proteins to generate eight distinct remodeling complexes. ISWI complex-mediated nucleosome positioning within genes and gene regulatory elements is proving important for the transition from a committed progenitor state to a differentiated cell state. Genetic studies have implicated the involvement of many ATP-dependent chromatin remodeling proteins in neurodevelopmental disorders (NDDs), including SMARCA1. Here we review the characterization of mice inactivated for ISWI and their interacting proteins, as it pertains to brain development and disease. A better understanding of chromatin dynamics during neural development is a prerequisite to understanding disease pathologies and the development of therapeutics for these complex disorders.
LINE-1 (L1) is a non-long terminal repeat (LTR) retrotransposon inserted throughout the human genome. APOBEC3 (A3) proteins are part of a network of host intrinsic defenses capable of restricting retroviruses and the replication of L1 retroelements. These enzymes inactivate retroviruses primarily through deamination of single-stranded viral DNA. In contrast, only A3A deaminates L1 DNA, while the other six A3 proteins restrict L1 to varying degrees through yet poorly defined mechanisms. Here we provide further insight into the molecular attributes of L1 restriction by A3 proteins. We specifically investigated the roles of A3 protein oligomerization, interactions with RNA and their binding to the various L1 proteins. Our results show that compromising the ability of A3 proteins to oligomerize or interact with a nucleic acid substrate diminished L1 restriction to varying degrees. However the efficiency of their binding to L1 proteins did not predict restriction or the potency of the restriction.
Chromatin remodeling proteins utilize the energy from ATP hydrolysis to mobilize nucleosomes often creating accessibility for transcription factors within gene regulatory elements. Aberrant chromatin remodeling has diverse effects on neuroprogenitor homeostasis altering progenitor competence, proliferation, survival, or cell fate. Previous work has shown that inactivation of the ISWI genes, Smarca5 (encoding Snf2h) and Smarca1 (encoding Snf2l) have dramatic effects on brain development. Smarca5 conditional knockout mice have reduced progenitor expansion and severe forebrain hypoplasia, with a similar effect on the postnatal growth of the cerebellum. In contrast, Smarca1 mutants exhibited enlarged forebrains with delayed progenitor differentiation and increased neuronal output. Here, we utilized cerebellar granule neuron precursor (GNP) cultures from Smarca1 mutant mice (Ex6DEL) to explore the requirement for Snf2l on progenitor homeostasis. The Ex6DEL GNPs showed delayed differentiation upon plating that was not attributed to changes in the Sonic Hedgehog pathway but was associated with overexpression of numerous positive effectors of proliferation, including targets of Wnt activation. Transcriptome analysis identified increased expression of Fosb and Fosl2 while ATACseq experiments identified a large increase in chromatin accessibility at promoters many enriched for Fos/Jun binding sites. Nonetheless, the elevated proliferation index was transient and the Ex6DEL cultures initiated differentiation with a high concordance in gene expression changes to the wild type cultures. Genes specific to Ex6DEL differentiation were associated with an increased activation of the ERK signaling pathway. Taken together, this data provides the first indication of how Smarca1 mutations alter progenitor cell homeostasis and contribute to changes in brain size.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.