Despite an increasing research conducted on ocean plastic pollution over the last decade, there are still large knowledge gaps in our current understanding of how floating plastic debris accumulating in subtropical oceanic gyres may harm the surface-associated pelagic community known as neuston. Removing floating plastic debris from the surface ocean can minimize potentially adverse effects of plastic pollution on the neuston, as well as prevent the formation of large quantities of secondary micro- and nanoplastics. However, due to the scarcity of observational data from remote and difficult to access offshore waters, neuston dynamics in subtropical oceanic gyres and thus the potential impacts of plastic pollution as well as of cleanup activities on the neuston remain uncertain. Here, we provide rare observational data of the relative distribution of floating plastic debris (0.05–5 cm in size) and members of the neuston in the eastern North Pacific Ocean. Our results reveal that the dominant neustonic species co-occurring with high concentrations of floating plastic debris in the North Pacific Garbage Patch (NPGP) such as Porpita porpita, Halobates spp., pteropods, isopods, heteropods, and crabs depict either a low atmospheric drag due to physical attributes or a potential plastic-associated fitness benefit such as increased surface area for oviposition and structure for habitat. We further observe relatively higher plastic to organism ratios inside the NPGP for most target species compared to waters outside the NPGP. The findings presented here provide a first observational baseline to develop ecological models that can help evaluate the long-term risks of plastic pollution and of offshore cleanup activities for neuston in the eastern North Pacific Ocean. We further suggest that offshore mitigation strategies aiming at removing floating plastic debris from the ocean surface need to evaluate both, the direct impact of neuston bycatch during plastic removal on neuston population dynamics, as well as the potential benefits of reducing the negative effects of plastic pollution on the neuston.
Plastic waste accumulating in the global ocean is an increasingly threatening environmental issue. To date, the floating and thus most visible fraction of ocean plastic pollution has been mapped at global scale. Yet, large knowledge gaps exist in our current understanding of the transport and transformation processes of positively buoyant plastic debris at the sea surface. Observations at sea typically report an apparent scarcity of microplastics (<5 mm) relative to the expected abundance-size distribution based on fragmentation of larger plastic objects. Here, we provide a comprehensive study on the relative abundance of microplastics (>500 µm) and mesoplastics (0.5–5 cm) in the surface waters of the eastern North Pacific Ocean using data from 1136 040 plastic fragments collected by 679 neuston trawl deployments between 2015 and 2019. Our results reveal that the apparent microplastic scarcity is not uniformly distributed across the region. Instead, we show that the relative abundance of floating microplastics increases from the outside to the inside of the North Pacific Garbage Patch. We hypothesize that this observation could be explained by (i) a spatially variable microplastic removal due to spatial differences in ocean productivity, (ii) a differential dispersal of micro- vs. mesoplastics with a preferential accumulation of microplastics in the subtropical gyre, and/or (iii) the timescales associated with transport and fragmentation of plastic objects at the ocean surface with older, more degraded, floating plastic accumulation in subtropical gyres. The results presented here highlight that global estimates of the accumulation and removal of positively buoyant microplastics need to consider spatial aspects such as variations in ocean productivity, the dominant physical transport processes in a given area, as well as the time needed for a plastic object to reach the specific offshore location.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.