Although the concept of persistence in chlamydial infections has been recognized for about 80 years, there is still very little known about the mechanism by which this occurs. In this review, we revisit an old paradigm, long known to chlamydiologists and veterinarians, that in virtually all hosts of chlamydiae, including mammals and birds, chlamydiae reside in the gastrointestinal tract for long periods of time in the absence of clinical disease. Thus, if gastrointestinal infection occurs in most hosts, then it is very likely that gastrointestinal infection occurs in humans as well. We demonstrate that gastrointestinal infection does indeed occur in humans and propose that this anatomical site is the source of persistent infection in humans. The data in ruminants and animal models demonstrate that the immune system is unable to clear chlamydiae from the gut, so they can remain indefinitely, with continual shedding in feces. Clearly, many women become reinfected from an untreated partner; however, we propose that women, cured of genital infection, remain at risk for autoinoculation from the lower gastrointestinal tract. Moreover, there are substantial data demonstrating treatment failure of chlamydial infections, particularly with azithromycin. New data in the mouse model have shown that azithromycin is far less effective against chlamydial gastrointestinal infection than against genital infections. Therefore, it is possible that women cured of genital infection by antibiotics remain infected in the gastrointestinal tract and can become reinfected by autoinoculation from that site.
The mechanism by which chlamydiae persist in vivo remains undefined; however, chlamydiae in most animals persist in the gastrointestinal tract (GI) and are transmitted via the fecal-oral route. Oral infection of mice with Chlamydia muridarum was previously shown to establish a long-term persistent infection in the GI tract. In this study, BALB/c, DBA/2 and C57Bl/6 mice, infected orally with C. muridarum, were infected in the cecum for as long as 100 days in the absence of pathology. The primary target tissue was the cecum although the large intestine was also infected in most animals. A strong serum IgG and cecal IgA antibody response developed. Lymphocyte proliferation assays to chlamydial antigen on mesenteric lymph node cells were positive by day 10 and peaked on days 15–21, but the response returned to baseline levels by 50 days, despite the ongoing presence of the organism in the cecum. Since studies have shown that women and men become infected orally with chlamydiae, we propose that the GI tract is a site of persistent infection and that immune down-regulation in the gut allows chlamydiae to persist indefinitely. As a result, women may become reinfected via contamination of the genital tract from the lower GI tract.
Exclusive human milk feeding of the newborn is recommended during the first 6 months of life to promote optimal health outcomes during early life and beyond. Human milk contains a variety of bioactive factors such as hormones, cytokines, leukocytes, immunoglobulins, lactoferrin, lysozyme, stem cells, human milk oligosaccharides (HMOs), microbiota, and microRNAs. Recent findings highlighted the potential importance of adding HMOs into infant formula for their roles in enhancing host defense mechanisms in neonates. Therefore, understanding the roles of human milk bioactive factors on immune function is critical to build the scientific evidence base around breastfeeding recommendations, and to enhance positive health outcomes in formula fed infants through modifications to formulas. However, there are still knowledge gaps concerning the roles of different milk components, the interactions between the different components, and the mechanisms behind health outcomes are poorly understood. This review aims to show the current knowledge about HMOs, milk microbiota, immunoglobulins, lactoferrin, and milk microRNAs (miRNAs) and how these could have similar mechanisms of regulating gut and microbiota function. It will also highlight the knowledge gaps for future research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.