Ion Conduction / Self-Diffusion / Model / Materials ScienceUnderstanding the mechanisms of translational and localised ionic movements in disordered materials has seen intense activity spanning several decades. This article attempts to convey a concise overview of our contribution to this field over the period from 2005 to 2010 and to place it in its broad context.
We study the factors that affect the morphology of Co(OH)(2) Liesegang rings, in a way to obtain concentric rings with large spacing, upon an appropriate variation in the experimental conditions. Such well-resolved patterns are obtained under optimum conditions: decrease in the concentration of the outer electrolyte, increase in the concentration of both the inner electrolyte and the gelatin in the hosting gel medium, and increase in the strength of a constant radial electric field applied across the pattern domain. The effect of pH on the bands in a 1D Co(OH)(2) Liesegang pattern is also investigated. The initial pH of the diffusing solution plays a central role in altering the band morphology, because the outer electrolyte (NH(4)OH) is a base, strongly affected by the H(+) equilibrium. The number of bands decreases and the interband spacing increases with decreasing pH of the NH(4)OH solution. The pattern morphology in that case is controlled by the NH(4)Cl/NH(4)OH ratio.
The study of morphology and shape development has gained considerable interest in certain sciences, notably biology and geology. Liesegang experiments producing Co(OH)2 stratification are performed here, in one, two, and three dimensions for comparison of the pattern morphologies. We obtain well-resolved bands in one dimension, target patterns (rings) in two dimensions, and onion patterns (spherical shells) in three dimensions. The morphological characteristics of the various patterns (spacing coefficients, rate of growth of ring spacing with distance) were measured. The spacing ratio of the strata in the different spatial dimensions was found to be anticorrelated with the surface-to-volume ratio of the gel domain. Some studies featuring the importance of morphology in Liesegang systems are briefly surveyed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.