Viruses that establish latent infections have evolved unique mechanisms to avoid host immune recognition. Maintenance proteins of these viruses regulate their synthesis to levels sufficient for maintaining persistent infection but below threshold levels for host immune detection. The mechanisms governing this finely tuned regulation of viral latency are unknown. Here we show that mRNAs encoding gammaherpesviral maintenance proteins contain within their open reading frames clusters of unusual structural elements, G-quadruplexes, which are responsible for the cisacting regulation of viral mRNA translation. By studying the Epstein-Barr virus-encoded nuclear antigen 1 (EBNA1) mRNA, we demonstrate that destabilization of G-quadruplexes using antisense oligonucleotides increases EBNA1 mRNA translation. In contrast, pretreatment with a G-quadruplex-stabilizing small molecule, pyridostatin, decreases EBNA1 synthesis, highlighting the importance of G-quadruplexes within virally encoded transcripts as unique regulatory signals
Efforts are being made worldwide to understand the immune response to SARS-CoV-2, the virus responsible for the COVID-19 pandemic, including the impact of T cell immunity and cross-recognition with seasonal coronaviruses. Screening SARS-CoV-2 peptide pools revealed that the nucleocapsid (N) protein induced an immunodominant response in HLA-B7 + COVID-19-recovered individuals that was also detectable in unexposed donors. A single N-encoded epitope that was highly conserved across circulating coronaviruses drove this immunodominant response. In vitro peptide stimulation and crystal structure analyses revealed T cell-mediated cross-reactivity towards circulating OC43 and HKU-1 beta coronaviruses, but not 229E or NL63 alpha coronaviruses, due to different peptide conformations. TCR sequencing indicated cross-reactivity was driven by private T cell receptor repertoires with a bias for TRBV27 and a long CDR3β loop. Together, our findings demonstrate the basis of selective T cell cross-reactivity towards an immunodominant SARS-CoV-2 epitope and its homologues from seasonal coronaviruses, suggesting long-lived protective immunity.
Epstein-Barr virus (EBV) is necessary for the development of nasopharyngeal carcinoma (NPC). By adulthood, approximately 90% of individuals test EBV-positive, but only a fraction develop cancer. Factors that identify which individuals are most likely to develop disease, including differential antibody response to the virus, could facilitate detection at early stages when treatment is most effective. We measured anti-EBV IgG and IgA antibody responses in 607 Taiwanese individuals. Antibodies were measured using a custom protein microarray targeting 199 sequences from 86 EBV proteins. Variation in response patterns between NPC cases and controls was used to develop an antibody-based risk score for predicting NPC. The overall accuracy [area under the curve (AUC)] of this risk score, and its performance relative to currently used biomarkers, was evaluated in two independent Taiwanese cohorts. Levels of 60 IgA and 73 IgG anti-EBV antibodies differed between stage I/IIa NPC cases and controls ( < 0.0002). Risk prediction analyses identified antibody targets that best discriminated NPC status-BXLF1, LF2,BZLF1, BRLF1, EAd, BGLF2, BPLF1, BFRF1, and BORF1. When combined with currently used VCA/EBNA1 IgA biomarkers, the resulting risk score predicted NPC with 93% accuracy (95% CI, 87%-98%) in the general Taiwanese population, a significant improvement beyond current biomarkers alone (82%; 95% CI, 75%-90%, ≤ 0.01). This EBV-based risk score also improved NPC prediction in genetically high-risk families (89%; 95% CI, 82%-96%) compared with current biomarkers (78%; 95% CI, 66%-90%, ≤ 0.03). We identified NPC-related differences in 133 anti-EBV antibodies and developed a risk score using this microarray dataset that targeted immune responses against EBV proteins from all stages of the viral life cycle, significantly improving the ability to predict NPC. .
Highlights d Group 1 and 2 DBLa domains are serodominant in PNG children exposed to malaria d Antibodies against individual DBLa are weakly associated with risk of clinical malaria d Antibodies against specific conserved DBLa are strongly associated with severe malaria d Protective DBLa antibodies are potential biomarkers for severe disease risk
Cellular immunotherapeutics targeting the human papillomavirus (HPV)–16 E6 and E7 proteins have achieved limited success in HPV-positive oropharyngeal cancer (OPC). Here we have conducted proteome-wide profiling of HPV-16–specific T cell responses in a cohort of 66 patients with HPV-associated OPC and 22 healthy individuals. Unexpectedly, HPV-specific T cell responses from OPC patients were not constrained to the E6 and E7 antigens; they also recognized E1, E2, E4, E5, and L1 proteins as dominant targets for virus-specific CD8+ and CD4+ T cells. Multivariate analysis incorporating tumor staging, treatment status, and smoking history revealed that treatment status had the most significant impact on HPV-specific CD8+ and CD4+ T cell immunity. Specifically, the breadth and overall strength of HPV-specific T cell responses were significantly higher before the commencement of curative therapy than after therapy. These data provide the first glimpse of the overall human T cell response to HPV in a clinical setting and offer groundbreaking insight into future development of cellular immunotherapies for HPV-associated OPC patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.