Transcanal endoscopic myringoplasty is a feasible, safe, and effective procedure; it can be an alternative to microscopic surgery.
PURPOSE:Initial study of the pig`s temporal bone anatomy in order to enable a new experimental model in ear surgery. METHODS:Dissection of five temporal bones of Sus scrofa pigs obtained from UNIFESP -Surgical Skills Laboratory, removed with hole saw to avoid any injury and stored in formaldehyde 10% for better conservation. The microdissection in all five temporal bone had the following steps: inspection of the outer part, external canal and tympanic membrane microscopy, mastoidectomy, removal of external ear canal and tympanic membrane, inspection of ossicular chain and middle ear. RESULTS:Anatomically it is located at the same position than in humans. Some landmarks usually found in humans are missing. The tympanic membrane of the pig showed to be very similar to the human, separating the external and the middle ear. The middle ear`s appearance is very similar than in humans. The ossicular chain is almost exactly the same, as well as the facial nerve, showing the same relationship with the lateral semicircular canal. CONCLUSION:The temporal bone of the pigs can be used as an alternative for training in ear surgery, especially due the facility to find it and its similarity with temporal bone of the humans.
Objective Tympanostomy is one of the most commonly performed surgical procedures in otolaryngology, and its complexity is challenging for trainee surgeons. Investing in medical education is a cornerstone of good patient safety practices. For trainees, use of simulators before operating on actual patients helps mitigate risks. This study aimed to develop a three-dimensional printed model simulator for myringotomy, tympanostomy and ventilation tube placement. Methods An articulated model with a detachable portion, base and plastic bag to simulate the external auditory canal, middle ear and tympanic membrane, respectively, was modelled and printed. Results The final simulator was made from acrylonitrile butadiene styrene polymer and measured 4 × 4 × 12 cm. It was designed to mimic the angulation of patient anatomy in the myringotomy position and simulate the texture and colour of the tissues of interest. The cost was low, and testing with an operating microscope and endoscope yielded satisfactory results. The advent of three-dimensional printing technology has made surgical simulation more accessible and less expensive, providing several advantages for medical education. Conclusion The proposed model fulfilled expectations as a safe, inexpensive, reproducible, user-friendly and accessible surgical education tool that can be improved and reassessed for further research.
PURPOSE:Initial study of the pig`s temporal bone anatomy in order to enable a new experimental model in ear surgery. METHODS:Dissection of five temporal bones of Sus scrofa pigs obtained from UNIFESP -Surgical Skills Laboratory, removed with hole saw to avoid any injury and stored in formaldehyde 10% for better conservation. The microdissection in all five temporal bone had the following steps: inspection of the outer part, external canal and tympanic membrane microscopy, mastoidectomy, removal of external ear canal and tympanic membrane, inspection of ossicular chain and middle ear. RESULTS:Anatomically it is located at the same position than in humans. Some landmarks usually found in humans are missing. The tympanic membrane of the pig showed to be very similar to the human, separating the external and the middle ear. The middle ear`s appearance is very similar than in humans. The ossicular chain is almost exactly the same, as well as the facial nerve, showing the same relationship with the lateral semicircular canal. CONCLUSION:The temporal bone of the pigs can be used as an alternative for training in ear surgery, especially due the facility to find it and its similarity with temporal bone of the humans.
PURPOSE:To evaluate the tissue response of the mucosa of the tympanic cavity of guinea pigs, when receiving biodegradable implant. METHODS:A total of 20 male guinea pigs were divided into 2 groups. After paracentesis in both ears, a biodegradable polymer of poly lactic-co-glycolic acid was implanted in only one middle ear. Histological analysis using neutrophil exudate and vascular neoformation (acute inflammation) and fibroblast proliferation and mononuclear inflammatory cells (chronic inflammation) as parameters was performed after 10 and 30 days of survival (groups 1 and 2, respectively). RESULTS:Four ears in group 1 and 7 in group 2 had an increase of neutrophil exudate. Vascular neoformation occurred in ears with or without the implant, in both groups. Fibroblast proliferation and mononuclear inflammatory cells (lymphocytes and macrophages) increased in ears with implant in group 2. CONCLUSION:The tissue response by histological analysis of the mucosa of the tympanic cavity of guinea pigs, when receiving biodegradable implant, showed no statistically significant difference between ears with or without the implant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.