The interactions of beta-lactoglobulin (BLG) with total acacia gum (TAG) in aqueous solutions have been investigated at pH 4.2 and 25 degrees C. Isothermal titration calorimetry (ITC) has been used to determine the type and magnitude of the energies involved in the complexation process of TAG to BLG. Dynamic light scattering (DLS), electrophoretic mobility (mu(E)), turbidity measurements (tau), and optical microscopy were used as complementary methods on the titration mode to better understand the sum of complicated phenomena at the origin of thermodynamic behavior. Two different binding steps were detected. Thermodynamic parameters indicate a first exothermic step with an association constant K(a1) of (48.4 +/- 3.6) x 10(7) M(-1) that appeared to be mostly enthalpy-driven. A positive heat capacity change was obtained corresponding at the signature for electrostatic interactions. The second binding step, 45 times less affinity (K(a2) = (1.1 +/- 0.1) x 10(7) M(-1)), was largely endothermic and more entropy-driven with a negative value of heat capacity change, indicative of a hydrophobic contribution to the binding process. The population distribution of the different species in solution and their sizes were determined through DLS. Dispersion turbidity of particles markedly increased and reached a maximum at a 0.015 TAG/BLG molar ratio. Largely more numerous coacervates appeared at this molar ratio (0.015) and two different kinds of morphologies were noticed for the large coacervates. Above the TAG/BLG molar ratio of 0.015, dispersions turbidity decreased, which might be due to an excess of negative charges onto particles as revealed by electrophoretic mobility measurements. The results presented in this study should provide information about the thermodynamic mechanisms of TAG/BLG binding processes and will facilitate the application of the formed supramolecular assemblies as functional ingredients in food and nonfood systems.
Micellar casein (MC) dispersions were studied at a constant protein concentration of 5 wt % in high NaCl environment. The micellar edifices were characterized as to their morphology, size, and content of proteins in the supernatant after ultracentrifugation. Additionally, changes in secondary structures of the protein upon salt increase were followed by Fourier Transform Infrared Spectroscopy (FTIR). For the first time, the estimations of secondary structural elements (irregular, ß-sheet, α-helix and turn) from Amide III assignments were correlated with results from Amide I. Casein micelles dispersions in water were characterized by Transmission Electron Microscopy (TEM) by a spherical shape and a size between 100 and 200 nm. A salt increase resulted to a destabilization of the micelle and the formation of mini-micelles more or less aggregated. The size of the new edifice was almost similar to the native micelle. These TEM observations were confirmed by a constant casein micelle hydrodynamic diameter determined by Dynamic Light Scattering (DLS) and ranging between 150 and 180 nm. Upon salt increase, FTIR revealed an increase in irregular structures and a concurrent decrease in ß-sheet structures. Secondary structural elements percentages were almost similar from Amide I and Amide III. The use of these multiscale techniques led to a better understanding of the micellar edifice under high salt environment. Around 3% NaCl addition, a good correlation was observed between destabilization of the micellar edifice, modifications of the caseins secondary structure and repartition of caseins between supernatant and pellet after ultracentrifugation.
Rehydration of native micellar casein and native whey isolate protein powders was followed in different ionic environments. Solutions of NaCl and CaCl2 in the concentration range of 0 to 12% (wt%) were used as rehydration media. The rehydration profiles obtained were interpreted in terms of wetting, swelling, and dispersion stages by using a turbidity method. Two behaviors were observed depending on the salt concentration. For native micellar casein powder, a significant change was observed between 3 and 6% NaCl and between 0.75 and 1.5% CaCl2. The first behavior (low salt concentration) presents a typical rehydration profile: quick wetting, swelling, and long dispersion stage. The dispersion stage of the second behavior (high salt concentration) was significantly shortened, indicating a strong modification of the protein backbone. The rehydration of whey protein powder was less influenced by salts. At low salt concentrations, a typical profile for whey powders was observed: wetting with lump formation and no swelling followed by a quick dispersion. At high CaCl2 concentrations, no turbidity stabilization was observed, indicating a possible protein unfolding and denaturation. Additionally, the changes in secondary structures of the 2 proteins upon salt increase were followed by Fourier transform infrared spectroscopy and confirmed the different profiles observed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.