In this paper, we present ForeCache, a general-purpose tool for exploratory browsing of large datasets. ForeCache utilizes a clientserver architecture, where the user interacts with a lightweight clientside interface to browse datasets, and the data to be browsed is retrieved from a DBMS running on a back-end server. We assume a detail-on-demand browsing paradigm, and optimize the back-end support for this paradigm by inserting a separate middleware layer in front of the DBMS. To improve response times, the middleware layer fetches data ahead of the user as she explores a dataset.We consider two different mechanisms for prefetching: (a) learning what to fetch from the user's recent movements, and (b) using data characteristics (e.g., histograms) to find data similar to what the user has viewed in the past. We incorporate these mechanisms into a single prediction engine that adjusts its prediction strategies over time, based on changes in the user's behavior. We evaluated our prediction engine with a user study, and found that our dynamic prefetching strategy provides: (1) significant improvements in overall latency when compared with non-prefetching systems (430% improvement); and (2) substantial improvements in both prediction accuracy (25% improvement) and latency (88% improvement) relative to existing prefetching techniques.
Supporting exploratory visual analysis (EVA) is a central goal of visualization research, and yet our understanding of the process is arguably vague and piecemeal. We contribute a consistent definition of EVA through review of the relevant literature, and an empirical evaluation of existing assumptions regarding how analysts perform EVA using Tableau, a popular visual analysis tool. We present the results of a study where 27 Tableau users answered various analysis questions across 3 datasets. We measure task performance, identify recurring patterns across participants' analyses, and assess variance from task specificity and dataset. We find striking differences between existing assumptions and the collected data. Participants successfully completed a variety of tasks, with over 80% accuracy across focused tasks with measurably correct answers. The observed cadence of analyses is surprisingly slow compared to popular assumptions from the database community. We find significant overlap in analyses across participants, showing that EVA behaviors can be predictable. Furthermore, we find few structural differences between behavior graphs for open‐ended and more focused exploration tasks.
Modern database management systems (DBMS) have been designed to efficiently store, manage and perform computations on massive amounts of data. In contrast, many existing visualization systems do not scale seamlessly from small data sets to enormous ones. We have designed a three-tiered visualization system called ScalaR to deal with this issue. ScalaR dynamically performs resolution reduction when the expected result of a DBMS query is too large to be effectively rendered on existing screen real estate. Instead of running the original query, ScalaR inserts aggregation, sampling or filtering operations to reduce the size of the result. This paper presents the design and implementation of ScalaR, and shows results for an example application, displaying satellite imagery data stored in SciDB as the back-end DBMS.
Most visualizations today are produced by retrieving data from a database and using a specialized visualization tool to render it. This decoupled approach results in significant duplication of functionality, such as aggregation and filters, and misses tremendous opportunities for cross-layer optimizations. In this paper, we present the case for an integrated Data Visualization Management System (DVMS) based on a declarative visualization language that fully compiles the end-to-end visualization pipeline into a set of relational algebra queries. Thus the DVMS can be both expressive via the visualization language, and performant by leveraging traditional and visualization-specific optimizations to scale interactive visualizations to massive datasets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.