A flourishing line of evidence has highlighted the encoding of speech sounds in the subcortical auditory system as being shaped by acoustic, linguistic, and musical experience and training. And while the heritability of auditory speech as well as nonspeech processing has been suggested, the genetic determinants of subcortical speech processing have not yet been uncovered. Here, we postulated that the serotonin transporter-linked polymorphic region (5-HTTLPR), a common functional polymorphism located in the promoter region of the serotonin transporter gene (SLC6A4), is implicated in speech encoding in the human subcortical auditory pathway. Serotonin has been shown as essential for modulating the brain response to sound both cortically and subcortically, yet the genetic factors regulating this modulation regarding speech sounds have not been disclosed. We recorded the frequency following response, a biomarker of the neural tracking of speech sounds in the subcortical auditory pathway, and cortical evoked potentials in 58 participants elicited to the syllable /ba/, which was presented Ͼ2000 times. Participants with low serotonin transporter expression had higher signal-to-noise ratios as well as a higher pitch strength representation of the periodic part of the syllable than participants with medium to high expression, possibly by tuning synaptic activity to the stimulus features and hence a more efficient suppression of noise. These results imply the 5-HTTLPR in subcortical auditory speech encoding and add an important, genetically determined layer to the factors shaping the human subcortical response to speech sounds.
Dehydroepiandrosterone (DHEA) and dehydroepiandrosterone-sulphate (DHEAS) have been reported to have memory enhancement effects in humans. A neuro-stimulatory action and an anti-cortisol mechanism of action may contribute to that relation. In order to study DHEA, DHEAS and cortisol relations to working memory and distraction, we recorded the electroencephalogram of 23 young women performing a discrimination (no working memory load) or 1-back (working memory load) task in an audio-visual oddball paradigm. We measured salivary DHEA, DHEAS and cortisol both before each task and at 30 and 60 min. Under working memory load, a higher baseline cortisol/DHEA ratio was related to higher distraction as indexed by an enhanced novelty P3. This suggests that cortisol may lead to increased distraction whereas DHEA may hinder distraction by leading to less processing of the distractor. An increased DHEA production with consecutive cognitive tasks was found and higher DHEA responses attributed to working memory load were related to enhanced working memory processing as indexed by an enhanced visual P300. Overall, the results suggest that in women DHEA may oppose cortisol effects reducing distraction and that a higher DHEA response may enhance working memory at the electrophysiological level.
Dehydroepiandrosterone (DHEA) and dehydroepiandrosterone-sulfate (DHEAS) may have mood enhancement effects: higher DHEAS concentrations and DHEA/cortisol ratio have been related to lower depression scores and controlled trials of DHEA administration have reported significant antidepressant effects. The balance between DHEAS and DHEA has been suggested to influence brain functioning. We explored DHEAS, DHEA, cortisol, DHEA/cortisol and DHEAS/DHEA ratios relations to the processing of negative emotional stimuli at behavioral and brain levels by recording the electroencephalogram of 21 young women while performing a visual task with implicit neutral or negative emotional content in an audio-visual oddball paradigm. For each condition, salivary DHEA, DHEAS and cortisol were measured before performing the task and at 30 and 60min intervals. DHEA increased after task performance, independent of the implicit emotional content. With implicit negative emotion, higher DHEAS/DHEA and DHEA/cortisol ratios before task performance were related to shorter visual P300 latencies suggesting faster brain processing under a negative emotional context. In addition, higher DHEAS/DHEA ratios were related to reduced visual P300 amplitudes, indicating less processing of the negative emotional stimuli. With this study, we could show that at the electrophysiological level, higher DHEAS/DHEA and DHEA/cortisol ratios were related to shorter stimulus evaluation times suggesting less interference of the implicit negative content of the stimuli with the task. Furthermore, higher DHEAS/DHEA ratios were related to reduced processing of negative emotional stimuli which may eventually constitute a protective mechanism against negative information overload.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.