Mutation detection through exome sequencing allows simultaneous analysis of all coding sequences of genes. However, it cannot yet replace Sanger sequencing (SS) in diagnostics because of incomplete representation and coverage of exons leading to missing clinically relevant mutations. Targeted next-generation sequencing (NGS), in which a selected fraction of genes is sequenced, may circumvent these shortcomings. We aimed to determine whether the sensitivity and specificity of targeted NGS is equal to those of SS. We constructed a targeted enrichment kit that includes 48 genes associated with hereditary cardiomyopathies. In total, 84 individuals with cardiomyopathies were sequenced using 151 bp paired-end reads on an Illumina MiSeq sequencer. The reproducibility was tested by repeating the entire procedure for five patients. The coverage of ≥30 reads per nucleotide, our major quality criterion, was 99% and in total ∼21,000 variants were identified. Confirmation with SS was performed for 168 variants (155 substitutions, 13 indels). All were confirmed, including a deletion of 18 bp and an insertion of 6 bp. The reproducibility was nearly 100%. We demonstrate that targeted NGS of a disease-specific subset of genes is equal to the quality of SS and it can therefore be reliably implemented as a stand-alone diagnostic test.
This report provides a compendium of current information relating to radiation dose to patients, including biokinetic models, biokinetic data, dose coefficients for organ and tissue absorbed doses, and effective dose for major radiopharmaceuticals based on the radiation protection guidance given in Publication 60(ICRP, 1991). These data were mainly compiled from Publications 53, 80, and 106(ICRP, 1987, 1998, 2008), and related amendments and corrections. This report also includes new information for 82Rb-chloride, iodide (123I, 124I, 125I, and 131I) and 123I labeled 2ß-carbomethoxy 3ß-(4-iodophenyl)-N-(3-fluoropropyl) nortropane (FPCIT).The coefficients tabulated in this publication will be superseded in due course by values calculated using new International Commission on Radiation Units and Measurements/International Commission on Radiological Protection adult and paediatric reference phantoms and Publication 103 methodology (ICRP,2007). The data presented in this report are intended for diagnostic nuclear medicine and not for therapeutic applications.
BackgroundTo date, the estimated radiation-absorbed dose to organs and tissues in patients undergoing diagnostic examinations in nuclear medicine is derived via calculations based on models of the human body and the biokinetic behaviour of the radiopharmaceutical. An internal dosimetry computer program, IDAC-Dose2.1, was developed based on the International Commission on Radiological Protection (ICRP)-specific absorbed fractions and computational framework of internal dose assessment given for reference adults in ICRP Publication 133. The program uses the radionuclide decay database of ICRP Publication 107 and considers 83 different source regions irradiating 47 target tissues, defining the effective dose as presented in ICRP Publications 60 and 103. The computer program was validated against another ICRP dosimetry program, Dose and Risk Calculation (DCAL), that employs the same computational framework in evaluation of occupational and environmental intakes of radionuclides. IDAC-Dose2.1 has a sub-module for absorbed dose calculations in spherical structures of different volumes and composition; this sub-module is intended for absorbed dose estimates in radiopharmaceutical therapy. For nine specific alpha emitters, the absorbed dose contribution from their decay products is also included in the committed absorbed dose calculations.ResultsThe absorbed doses and effective dose of 131I-iodide determined by IDAC-Dose2.1 were validated against the dosimetry program DCAL, showing identical results. IDAC-Dose2.1 was used to calculate absorbed doses for intravenously administered 18F-FDG and orally administered 99mTc-pertechnetate and 131I-iodide, three frequently used radiopharmaceuticals. Using the tissue weighting factors from ICRP Publication 103, the effective dose per administered activity was estimated to be 0.016 mSv/MBq for 18F-FDG, 0.014 mSv/MBq for 99mTc-pertechnetate, and 16 mSv/MBq for 131I-iodide.ConclusionsThe internal dosimetry program IDAC-Dose2.1 was developed and applied to three radiopharmaceuticals for validation against DCAL and to generate improved absorbed dose estimations for diagnostic nuclear medicine using specific absorbed fraction values of the ICRP computational voxel phantoms. The sub-module for absorbed dose calculations in spherical structures 1 mm to 9 cm in diameter and different tissue composition was included to broaden the clinical usefulness of the program. The IDAC-Dose2.1 program is free software for research and available for download at http://www.idac-dose.org.
(2005) Does electron and proton therapy reduce the risk of radiation induced cancer after spinal irradiation for childhood medulloblastoma? A comparative treatment planning study, Acta Oncologica, 44:6, 554-562,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.