Understanding biodiversity distribution is a primary goal of community ecology. At a landscape scale, bee communities are affected by habitat composition, anthropogenic land use, and fragmentation. However, little information is available on local-scale spatial distribution of bee communities within habitats that are uniform at the landscape scale. We studied a bee community along with floral and nesting resources over a 32 km2 area of uninterrupted Mediterranean scrubland. Our objectives were (i) to analyze floral and nesting resource composition at the habitat scale. We ask whether these resources follow a geographical pattern across the scrubland at bee-foraging relevant distances; (ii) to analyze the distribution of bee composition across the scrubland. Bees being highly mobile organisms, we ask whether bee composition shows a homogeneous distribution or else varies spatially. If so, we ask whether this variation is irregular or follows a geographical pattern and whether bees respond primarily to flower or to nesting resources; and (iii) to establish whether body size influences the response to local resource availability and ultimately spatial distribution. We obtained 6580 specimens belonging to 98 species. Despite bee mobility and the absence of environmental barriers, our bee community shows a clear geographical pattern. This pattern is mostly attributable to heterogeneous distribution of small (<55 mg) species (with presumed smaller foraging ranges), and is mostly explained by flower resources rather than nesting substrates. Even then, a large proportion (54.8%) of spatial variability remains unexplained by flower or nesting resources. We conclude that bee communities are strongly conditioned by local effects and may exhibit spatial heterogeneity patterns at a scale as low as 500–1000 m in patches of homogeneous habitat. These results have important implications for local pollination dynamics and spatial variation of plant-pollinator networks.
Euglossini bees are among the main pollinators of plant species in tropical and subtropical forests in Central and South America. These bees are known as long-distance pollinators due to their exceptional flight performance. Here we assessed through microsatellite loci the gene variation and genetic differentiation between populations of four abundant Euglossini species populations sampled in two areas, Picinguaba (mainland) and Anchieta Island, Ubatuba, São Paulo State, southeastern Brazil. There was no significant genetic differentiation between the island and mainland samples of Euglossa cordata (Fst = 0.008, P = 0.60), Eulaema cingulata (Fst = 0.029, P = 0.29) and Eulaema nigrita (Fst = 0.062, P = 0.38), but a significant gene differentiation between mainland and island samples of Euglossa stellfeldi (Fst = 0.028, P = 0.016) was detected. As expected, our results showed that the water body that separates the island from the mainland does not constitute a geographic barrier for these Euglossini bees. The absence of populational structuring of three out the four species studied corroborates previous reports on those bees, characterized by large populations, with high gene diversity and gene flow and very low levels of diploid males. But the Eg. stellfeldi results clearly point that dispersal ability is not similar to all euglossine bees, what requires the development of different conservationist strategies to the Euglossini species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.