The biogeochemical cycles of most toxic metals have been significantly altered by anthropogenic activities. Anaerobic, rain-fed organic soils are believed to record historical changes in atmospheric pollution. Suspected postdepositional mobility of trace elements, however, hinders the usefulness of peat bogs as pollution archives. To lower this uncertainty, we quantified the mobility of six trace metals in peat during an 18-month field manipulation. A replicated, reciprocal peat transplant experiment was conducted between a heavily polluted and a relatively unpolluted peatland, located 200 km apart in the Czech Republic (Central Europe). Both peatlands were Sphagnum-derived, lawn-dominated, and had water table close to the surface. A strikingly different behavior was observed for two groups of elements. Elements of group I, Fe and Mn, adjusted their abundances and vertical patterns to the host site, showing an extremely high degree of mobility. In contrast, elements of group II, Pb, Cu, Zn, and Ti, preserved their original vertical patterns at the host site, showing a high degree of immobility. Our experimental results suggest that not just lead, but also copper and zinc concentration profiles in peat are a reliable archive of temporal pollution changes within a wide pH range (2.5-5.8).
Abstract. An 18-month reciprocal peat transplant experiment was conducted between two peatlands in the Czech Republic. Both sites were 100% Sphagnum-covered, with no vascular plants, and no hummocks and hollows. Atmospheric depositions of sulfur were up to 10 times higher at the northern site Velke jerabi jezero (VJJ), compared to the southern site Cervene blato (CB). Forty-cm deep peat cores, 10-cm in diameter, were used as transplants and controls in five replicates. Our objective was to evaluate whether CO2 and CH4 emissions from Sphagnum peat bogs are governed mainly by organic matter quality in the substrate, or by environmental conditions. Emission rates and δ13C values of CO2 and CH4 were measured in the laboratory at time t=18 months. All measured parameters converged to those of the host site, indicating that, at least in the short-term perspective, environmental conditions were a more important control of greenhouse gas emissions than organic carbon quality in the substrate. Since sulfate reducers outcompete methanogens, we hypothesized that the S-polluted site VJJ should have lower methane emissions than CB. In fact, the opposite was true, with significantly (p<0.01) higher methane emissions from VJJ. Additionally, as a first step in an effort to link C isotope composition of emitted gases and residual peat substrate, we determined whether multiple vertical δ13C profiles in peat agree. A high degree of within-site homogeneity in δ13C was found. When a specific vertical δ13C trend was seen in one peat core, the same trend was also seen in all the remaining peat cores from the wetland. The δ13C value increased downcore at both CB and VJJ. At VJJ, however, 20 cm below surface, a reversal to lower δ13C downcore was seen. Based on 210Pb dating, peat at 20-cm depth at VJJ was only 15 years old. Increasing δ13C values in VJJ peat accumulated between 1880–1990 could not be caused by assimilation of atmospheric CO2 gradually enriched in the light isotope 12C due to fossil fuel burning. Rather they were a result of a combination of isotope fractionations accompanying assimilation and mineralization of Sphagnum C. These isotope fractionations may record information about past changes in C storage in wetlands.
Search for a biogeochemical archive of past sulfur pollution is motivated by the need to predict ecosystem health. Sofar, no indicator of local-scale S pollution has existed, while long-range transport of S can already be studied using polar ice records. One archive of S pollution in temperate climate zones could be annual growth rings of trees. However, S concentration patterns in tree rings of most species have been unknown because of negligible S accumulation in wood. We modified a wet chemistry procedure to increase the recovery of S from tree rings, and report time series of S concentrations in six trees from an acidified, spruce die-back affected area of Central Europe. Beech tree rings, despite 4 times lower atmospheric S inputs, exhibited twice higher S concentration in wood than spruce. The period of peak industrial S pollution of the 1980s did not result in enhanced S accumulation in tree rings of either species. Physiological processes rather than S abundance in the ecosystem regulate S storage in tree rings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.