Patients with chronic obstructive pulmonary disease (COPD) have slowed pulmonary O2 uptake (V̇o2p) kinetics during exercise, which may stem from inadequate muscle O2 delivery. However, it is currently unknown how COPD impacts the dynamic relationship between systemic and microvascular O2 delivery to uptake during exercise. We tested the hypothesis that, along with slowed V̇o2p kinetics, COPD patients have faster dynamics of muscle deoxygenation, but slower kinetics of cardiac output (Q̇t) following the onset of heavy-intensity exercise. We measured V̇o2p, Q̇t (impedance cardiography), and muscle deoxygenation (near-infrared spectroscopy) during heavy-intensity exercise performed to the limit of tolerance by 10 patients with moderate-to-severe COPD and 11 age-matched sedentary controls. Variables were analyzed by standard nonlinear regression equations. Time to exercise intolerance was significantly ( P < 0.05) lower in patients and related to the kinetics of V̇o2p ( r = −0.70; P < 0.05). Compared with controls, COPD patients displayed slower kinetics of V̇o2p (42 ± 13 vs. 73 ± 24 s) and Q̇t (67 ± 11 vs. 96 ± 32 s), and faster overall kinetics of muscle deoxy-Hb (19.9 ± 2.4 vs. 16.5 ± 3.4 s). Consequently, the time constant ratio of O2 uptake to mean response time of deoxy-Hb concentration was significantly greater in patients, suggesting a slower kinetics of microvascular O2 delivery. In conclusion, our data show that patients with moderate-to-severe COPD have impaired central and peripheral cardiovascular adjustments following the onset of heavy-intensity exercise. These cardiocirculatory disturbances negatively impact the dynamic matching of O2 delivery and utilization and may contribute to the slower V̇o2p kinetics compared with age-matched controls.
The first deep field images from the James Webb Space Telescope (JWST) of the galaxy cluster SMACS J0723.3-7327 reveal a wealth of new lensed images at uncharted infrared wavelengths, with unprecedented depth and resolution. Here we securely identify 14 new sets of multiply imaged galaxies totalling 42 images, adding to the five sets of bright and multiply-imaged galaxies already known from Hubble Space Telescope data. We find examples of arcs crossing critical curves, allowing detailed community follow-up, such as JWST spectroscopy for precise redshift determinations, and measurements of the chemical abundances and of the detailed internal gas dynamics of very distant, young galaxies. One such arc contains compact knots of magnification µ ∼750, and features a microlensed transient. We also detect an Einstein cross candidate only visible thanks to JWST's superb resolution. Our parametric lens model is available through the following link a) , and will be regularly updated using additional spectroscopic redshifts. The model reproduces the multiple images to better than an rms of 0.5 , and allows for accurate magnification estimates of high-redshift galaxies. The intracluster light extends beyond the cluster members, exhibiting large-scale features that suggest a significant past dynamical disturbance. This work represents a first taste of the enhanced power JWST will have for lensing-related science.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.