Optical sensors typically provide compact, fast and precise means of performing quantitative measures for almost any kind of measurand that is usually probed electronically. High-contrast grating (HCG) resonators are known to manifest an extremely sharp and sensitive optical resonance and can constitute a highly suitable sensing platform. In this paper we present two advanced high-contrast grating designs improving the sensing performances of conventional implementations. These configurations, namely pedestal and half-buried HCGs, allow to enhance the shift of the photonic resonance while maintaining the spectral features of the standard configuration. First, the spectral feature of the HCGs was numerically optimized to express the sharpest possible resonance when the structure is immersed in serum. Second, the sensing properties of conventional and advanced HCG implementations were studied by modelling the biological entities to be sensed as a thin dielectric coating layer of increasing thickness. Pedestal HCGs were found to provide a ∼12% improvement in sensitivity and a six-fold improvement in resonance quality factor (Q-factor), while buried HCGs resulted in a ∼58% improvement in sensitivity at the expense of a slightly broader resonance. Such structures may serve as an improved sensitive biosensing platform for near-infrared spectroscopy.
We propose a method of spatial modulation of inhomogeneous broadening of a quantum-well excitonic resonance based on local generation of defects produced by a focused ion beam. The method is applied to fabrication of excitonic diffraction grating in a single quantum-well InGaAs/GaAs structure by irradiating the sample with a beam of 35-keV He+ ions of exposure doses <1012 cm-2. The spectrum of resonant diffraction on such a structure is narrower than that of reflectivity and decreases much faster with increasing temperature. A proposed model of formation of the diffractive response based on the single scattering approximation well describes the results of the spectral and temperature measurements.
High-contrast gratings (HCG) are an excellent candidate for label-free detection of various kinds of biomarkers because they exhibit sharp and sensitive optical resonances. In this work, we experimentally show the performance of pedestal HCG (PHCG), which is significantly enhanced in comparison with that of conventional HCG. PCHGs were found to provide a 11.2% improvement in bulk refractive index sensitivity, from 482 nm/RIU for the conventional design to 536 nm/RIU. The observed resonance was narrower, resulting in a higher Q-factor and figure of merit. By depositing Al2O3, HfO2, and TiO2 of different thicknesses as model analyte layers, surface sensitivity values were estimated to be 10.5% better for PHCG. To evaluate the operation of the sensor in solution, avidin was employed as a model analyte. For avidin detection, the surface of the HCG was first silanized and subsequently functionalized with biotin, which is well known for its ability to bind selectively to avidin. A consistent red shift was observed with the addition of each of the functional layers, and the analysis of the spectral shift for various concentrations of avidin made it possible to calculate the limit of detection (LoD) and limit of quantification (LoQ) for the structures. PHCG showed a LoD of 2.1 ng/mL and LoQ of 85 ng/mL, significantly better than the values 3.2 ng/mL and 213 ng/mL respectively, obtained with the conventional HCG. These results demonstrate that the proposed PHCG have great potential for biosensing applications, particularly for detecting and quantifying low analyte concentrations.
Photoluminescence including fluorescence plays a great role in a wide variety of applications from biomedical sensing and imaging to optoelectronics. Therefore, the enhancement and control of photoluminescence has immense impact on both fundamental scientific research and aforementioned applications. Among various nanophotonic schemes and nanostructures to enhance the photoluminescence, we focus on a certain type of nanostructures, hyperbolic metamaterials (HMMs). HMMs are highly anisotropic metamaterials, which produce intense localized electric fields. Therefore, HMMs naturally boost photoluminescence from dye molecules, quantum dots, nitrogen-vacancy centers in diamonds, perovskites and transition metal dichalcogenides. We provide an overview of various configurations of HMMs, including metal-dielectric multilayers, trenches, metallic nanowires, and cavity structures fabricated with the use of noble metals, transparent conductive oxides, and refractory metals as plasmonic elements. We also discuss lasing action realized with HMMs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.