To achieve a good clinical outcome in radiotherapy treatment, a certain accuracy in the dose delivered to the patient is required. Therefore, it is necessary to keep the uncertainty in each of the steps of the process inside some acceptable values, which implies as low a global uncertainty as possible. The work reported here focused on the uncertainty evaluation of absorbed dose to water in the routine calibration for clinical beams in the range of energies used in external‐beam radiotherapy. With this aim, we considered various uncertainty components (corrected electrometer reading, calibration factor, beam quality correction factor, and reference conditions) associated with beam calibration. Results show a typical uncertainty in the determination of absorbed dose to water during beam calibration of approximately 1.3% for photon beams and 1.5% for electron beams (k=1 in both cases) when the ND,w formalism is used and kQ,Q0 is calculated theoretically. These values may vary depending on the uncertainty provided by the standards laboratory for calibration factor, which is shown in the work. For primary standards based on clinical linear accelerator beam energies, the uncertainty in this step of the process could be placed close to 1.0%. We also discuss the possibility of an uncertainty reduction with the adoption of the absorbed dose to water formalism as compared with the air kerma formalism.PACS numbers: 87.53.Dq, 87.53.Hv
The aim of this study is to determine the gantry angle and multileaf collimator (MLC) gap error‐detection threshold of a diode helical array with an inserted microionization chamber in order to use this device for the pretreatment quality assurance (QA) of intensity‐modulated radiation therapy (IMRT) treatments. Implications on the dose‐volume histograms (DVHs) of the patient treatments will also be considered for the establishment of a QA protocol with a reasonable tolerance level. Three dynamic IMRT HN (head and neck) and prostate treatments were studied. Random and systematic variations of gantry angle and systematic errors in MLC gap width of the clinical treatments were analyzed in order to establish the detection sensitivity of the array. The associated clinical significance was studied introducing the same errors in the treatment plan based on the patients' computed tomography (CT) and calculating the corresponding DVHs. The Gamma (3%/3 mm) presented a 4% variation in failure rate for a rotation error of 1° for both types of treatment. Both systematic and random errors in gantry rotation angle have little effect on the patients' DVHs. MLC gap width errors of 1 mm and 2 mm in the prostate treatments imply a mean variation in isocenter‐measured absorbed dose of 2.1% and 4.1%, respectively. In the case of HN, these errors entail a change in measured isocenter dose of 4.7% and 8.6%, respectively. The variation observed in the DVHs of the patients was, basically, a global displacement of the curves proportional to the isocenter dose variation caused by the gap width error. According to the array sensitivity to the analyzed errors and its implication in patient DVHs, a tolerance of 95% point passing rate for the gamma criterion 3%/2 mm and an agreement of 2% in isocenter absolute dose have been established as tolerance criteria for our pretreatment IMRT QA protocol.PACS number: 87.56.Fc
The two groups achieved similar levels of pain control in supine, seated and standing positions. Quality of life also improved in both groups. However, the higher dose (8 Gy dose) in combination with zoledronic acid is associated with a longer period without skeletal events.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.