In this research paper we propose a novel method to perform an integrated analysis of the status and vulnerability of coastal aquifers to seawater intrusion (SWI). The method is based on a conceptual approach of intrusion that allows to summarised results in a visual way at different spatial scales, moving from steady pictures (corresponding to instantaneous or mean values in a period) including maps and 2D conceptual crosssections and temporal series of lumped indices. Our aim is to help in the identification of coastal groundwater bodies at risk of not achieving good chemical status according to the Water Framework Directive. The indices are obtained from available information about aquifer geometry and historical monitoring data (chloride concentration and
Abstract. Any change in the components of the water balance in a coastal aquifer, whether natural or anthropogenic, can alter the freshwater–salt water equilibrium. In this sense climate change (CC) and land use and land cover (LULC) change might significantly influence the availability of groundwater resources in the future. These coastal systems demand an integrated analysis of quantity and quality issues to obtain an appropriate assessment of hydrological impacts using density-dependent flow solutions. The aim of this work is to perform an integrated analysis of future potential global change (GC) scenarios and their hydrological impacts in a coastal aquifer, the Plana Oropesa-Torreblanca aquifer. It is a Mediterranean aquifer that extends over 75 km2 in which important historical LULC changes have been produced and are planned for the future. Future CC scenarios will be defined by using an equi-feasible and non-feasible ensemble of projections based on the results of a multi-criteria analysis of the series generated from several regional climatic models with different downscaling approaches. The hydrological impacts of these CC scenarios combined with future LULC scenarios will be assessed with a chain of models defined by a sequential coupling of rainfall-recharge models, crop irrigation requirements and irrigation return models (for the aquifer and its neighbours that feed it), and a density-dependent aquifer approach. This chain of models, calibrated using the available historical data, allow testing of the conceptual approximation of the aquifer behaviour. They are also fed with series representatives of potential global change scenarios in order to perform a sensitivity analysis regarding future scenarios of rainfall recharge, lateral flows coming from the hydraulically connected neighbouring aquifer, agricultural recharge (taking into account expected future LULC changes) and sea level rise (SLR). The proposed analysis is valuable for improving our knowledge about the aquifer, and so comprises a tool to design sustainable adaptation management strategies taking into account the uncertainty in future GC conditions and their impacts. The results show that GC scenarios produce significant increases in the variability of flow budget components and in the salinity.
Climate change afects rainfall and temperature producing a breakdown in the water balance and a variation in the dynamic of freshwater-seawater in coastal areas, exacerbating seawater intrusion (SWI) problems. The target of this paper is to propose a method to assess and analyze impacts of future global change (GC) scenarios on SWI at the aquifer scale in a coastal area. Some adaptation measures have been integrated in the deinition of future GC scenarios incorporating complementary resources within the system in accordance with urban development planning. The proposed methodology summarizes the impacts of potential GC scenarios in terms of SWI status and vulnerability at the aquifer scale through steady pictures (maps and conceptual 2D cross sections for speciic dates or statistics of a period) and time series for lumped indices. It is applied to the Plana de Oropesa-Torreblanca aquifer. The results summarize the inluence of GC scenarios in the global status and vulnerability to SWI under some management scenarios. These GC scenarios would produce higher variability of SWI status and vulnerability. Keywords Global change impacts • Adaptation measures • Seawater intrusion • Status and vulnerability • Coastal aquifer • Lumped indexThis article is a part of the Topical Collection in Environmental Earth Sciences on "Impacts of Global Change on Groundwater in Western Mediterranean Countries", guest edited by Maria Luisa Calvache, Carlos Duque and David Pulido-Velazquez.
The management of droughts is a challenging issue, especially in water scarcity areas, where this problem will be exacerbated in the future. The aim of this paper is to identify potential groundwater (GW) bodies with reduced vulnerability to pumping, which can be used as buffer values to define sustainable conjunctive use management during droughts. Assuming that the long term natural mean reserves are maintained, a preliminary assessment of GW vulnerability can be obtained by using the natural turnover time (T) index, defined in each GW body as the storage capacity (S) divided by the recharge (R). Aquifers where R is close to S are extremely vulnerable to exploitation. This approach will be applied in the 146 Spanish GW bodies at risk of not achieving the Water Framework Directive (WFD objectives, to maintain a good quantitative status. The analyses will be focused on the impacts of the climate drivers on the mean T value for Historical and potential future scenarios, assuming that the Land Use and Land Cover (LULC) changes and the management strategies will allow maintenance of the long term mean natural GW body reserves. Around 26.9% of these GW bodies show low vulnerability to pumping, when viewing historical T values over 100 years, this percentage growing to 33.1% in near future horizon values (until 2045). The results show a significant heterogeneity. The range of variability for the historical T values is around 3700 years, which also increases in the near future to 4200 years. These T indices will change in future horizons, and, therefore, the potential of GW resources to undergo sustainable strategies to adapt to climate change will also change accordingly, making it necessary to apply adaptive management strategies.
The DRASTIC (D: Depth to water; R: Net recharge; A: Aquifer media; S: Soil media; T: Topography; I: Impact of vadose zone; C: Hydraulic conductivity) index is usually applied to assess intrinsic vulnerability in detrital and carbonate aquifers, although it does not take into account the particularities of karst systems as the COP (C: Concentration of flow; O: Overlying layers above water table; P: precipitation) method does. In this paper we aim to find a reasonable correspondence between the vulnerability maps obtained using these two methods. We adapt the DRASTIC index in order to obtain reliable assessments in carbonate aquifers while maintaining its original conceptual formulation. This approach is analogous to the hypothesis of “equivalent porous medium”, which applies to karstic aquifers the numerical solution developed for detrital aquifers. We applied our novel method to the Upper Guadiana Basin, which contains both carbonate and detrital aquifers. Validation analysis demonstrated a higher confidence in the vulnerability assessment provided by the COP method in the carbonate aquifers. The proposed method solves an optimization problem to minimize the differences between the assessments provided by the modified DRASTIC and COP methods. Decision trees and spatial statistics analyses were combined to identify the ranges and weights of DRASTIC parameters to produce an optimal solution that matches the COP vulnerability classification for carbonate aquifers in 75% of the area, while maintaining a reliable assessment of the detrital aquifers in the Basin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.